| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isinito2.1 |
|- .1. = ( SetCat ` 1o ) |
| 2 |
|
isinito2.f |
|- F = ( ( 1st ` ( .1. DiagFunc C ) ) ` (/) ) |
| 3 |
|
relup |
|- Rel ( F ( C UP .1. ) (/) ) |
| 4 |
1 2
|
isinito2 |
|- ( I e. ( InitO ` C ) <-> I ( F ( C UP .1. ) (/) ) (/) ) |
| 5 |
4
|
biimpi |
|- ( I e. ( InitO ` C ) -> I ( F ( C UP .1. ) (/) ) (/) ) |
| 6 |
|
releldm |
|- ( ( Rel ( F ( C UP .1. ) (/) ) /\ I ( F ( C UP .1. ) (/) ) (/) ) -> I e. dom ( F ( C UP .1. ) (/) ) ) |
| 7 |
3 5 6
|
sylancr |
|- ( I e. ( InitO ` C ) -> I e. dom ( F ( C UP .1. ) (/) ) ) |
| 8 |
|
releldmb |
|- ( Rel ( F ( C UP .1. ) (/) ) -> ( I e. dom ( F ( C UP .1. ) (/) ) <-> E. y I ( F ( C UP .1. ) (/) ) y ) ) |
| 9 |
3 8
|
ax-mp |
|- ( I e. dom ( F ( C UP .1. ) (/) ) <-> E. y I ( F ( C UP .1. ) (/) ) y ) |
| 10 |
|
id |
|- ( I ( F ( C UP .1. ) (/) ) y -> I ( F ( C UP .1. ) (/) ) y ) |
| 11 |
10
|
up1st2nd |
|- ( I ( F ( C UP .1. ) (/) ) y -> I ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( C UP .1. ) (/) ) y ) |
| 12 |
1
|
setc1ohomfval |
|- { <. (/) , (/) , 1o >. } = ( Hom ` .1. ) |
| 13 |
11 12
|
uprcl5 |
|- ( I ( F ( C UP .1. ) (/) ) y -> y e. ( (/) { <. (/) , (/) , 1o >. } ( ( 1st ` F ) ` I ) ) ) |
| 14 |
|
eqid |
|- ( .1. DiagFunc C ) = ( .1. DiagFunc C ) |
| 15 |
|
setc1oterm |
|- ( SetCat ` 1o ) e. TermCat |
| 16 |
1 15
|
eqeltri |
|- .1. e. TermCat |
| 17 |
16
|
a1i |
|- ( I ( F ( C UP .1. ) (/) ) y -> .1. e. TermCat ) |
| 18 |
17
|
termccd |
|- ( I ( F ( C UP .1. ) (/) ) y -> .1. e. Cat ) |
| 19 |
11
|
uprcl2 |
|- ( I ( F ( C UP .1. ) (/) ) y -> ( 1st ` F ) ( C Func .1. ) ( 2nd ` F ) ) |
| 20 |
19
|
funcrcl2 |
|- ( I ( F ( C UP .1. ) (/) ) y -> C e. Cat ) |
| 21 |
1
|
setc1obas |
|- 1o = ( Base ` .1. ) |
| 22 |
11 21
|
uprcl3 |
|- ( I ( F ( C UP .1. ) (/) ) y -> (/) e. 1o ) |
| 23 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 24 |
11 23
|
uprcl4 |
|- ( I ( F ( C UP .1. ) (/) ) y -> I e. ( Base ` C ) ) |
| 25 |
14 18 20 21 22 2 23 24
|
diag11 |
|- ( I ( F ( C UP .1. ) (/) ) y -> ( ( 1st ` F ) ` I ) = (/) ) |
| 26 |
25
|
oveq2d |
|- ( I ( F ( C UP .1. ) (/) ) y -> ( (/) { <. (/) , (/) , 1o >. } ( ( 1st ` F ) ` I ) ) = ( (/) { <. (/) , (/) , 1o >. } (/) ) ) |
| 27 |
|
1oex |
|- 1o e. _V |
| 28 |
27
|
ovsn2 |
|- ( (/) { <. (/) , (/) , 1o >. } (/) ) = 1o |
| 29 |
26 28
|
eqtrdi |
|- ( I ( F ( C UP .1. ) (/) ) y -> ( (/) { <. (/) , (/) , 1o >. } ( ( 1st ` F ) ` I ) ) = 1o ) |
| 30 |
13 29
|
eleqtrd |
|- ( I ( F ( C UP .1. ) (/) ) y -> y e. 1o ) |
| 31 |
|
el1o |
|- ( y e. 1o <-> y = (/) ) |
| 32 |
30 31
|
sylib |
|- ( I ( F ( C UP .1. ) (/) ) y -> y = (/) ) |
| 33 |
10 32
|
breqtrd |
|- ( I ( F ( C UP .1. ) (/) ) y -> I ( F ( C UP .1. ) (/) ) (/) ) |
| 34 |
33 4
|
sylibr |
|- ( I ( F ( C UP .1. ) (/) ) y -> I e. ( InitO ` C ) ) |
| 35 |
34
|
exlimiv |
|- ( E. y I ( F ( C UP .1. ) (/) ) y -> I e. ( InitO ` C ) ) |
| 36 |
9 35
|
sylbi |
|- ( I e. dom ( F ( C UP .1. ) (/) ) -> I e. ( InitO ` C ) ) |
| 37 |
7 36
|
impbii |
|- ( I e. ( InitO ` C ) <-> I e. dom ( F ( C UP .1. ) (/) ) ) |