| Step |
Hyp |
Ref |
Expression |
| 1 |
|
initofn |
|- InitO Fn Cat |
| 2 |
|
ovex |
|- ( f ( c UP d ) (/) ) e. _V |
| 3 |
2
|
dmex |
|- dom ( f ( c UP d ) (/) ) e. _V |
| 4 |
3
|
csbex |
|- [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) e. _V |
| 5 |
4
|
csbex |
|- [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) e. _V |
| 6 |
|
eqid |
|- ( c e. Cat |-> [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) ) = ( c e. Cat |-> [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) ) |
| 7 |
5 6
|
fnmpti |
|- ( c e. Cat |-> [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) ) Fn Cat |
| 8 |
|
eqfnfv |
|- ( ( InitO Fn Cat /\ ( c e. Cat |-> [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) ) Fn Cat ) -> ( InitO = ( c e. Cat |-> [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) ) <-> A. e e. Cat ( InitO ` e ) = ( ( c e. Cat |-> [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) ) ` e ) ) ) |
| 9 |
1 7 8
|
mp2an |
|- ( InitO = ( c e. Cat |-> [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) ) <-> A. e e. Cat ( InitO ` e ) = ( ( c e. Cat |-> [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) ) ` e ) ) |
| 10 |
|
eqid |
|- ( SetCat ` 1o ) = ( SetCat ` 1o ) |
| 11 |
|
eqid |
|- ( ( 1st ` ( ( SetCat ` 1o ) DiagFunc e ) ) ` (/) ) = ( ( 1st ` ( ( SetCat ` 1o ) DiagFunc e ) ) ` (/) ) |
| 12 |
10 11
|
isinito3 |
|- ( x e. ( InitO ` e ) <-> x e. dom ( ( ( 1st ` ( ( SetCat ` 1o ) DiagFunc e ) ) ` (/) ) ( e UP ( SetCat ` 1o ) ) (/) ) ) |
| 13 |
12
|
eqriv |
|- ( InitO ` e ) = dom ( ( ( 1st ` ( ( SetCat ` 1o ) DiagFunc e ) ) ` (/) ) ( e UP ( SetCat ` 1o ) ) (/) ) |
| 14 |
|
fvex |
|- ( SetCat ` 1o ) e. _V |
| 15 |
|
fvexd |
|- ( d = ( SetCat ` 1o ) -> ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) e. _V ) |
| 16 |
|
simpl |
|- ( ( d = ( SetCat ` 1o ) /\ f = ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) ) -> d = ( SetCat ` 1o ) ) |
| 17 |
16
|
oveq2d |
|- ( ( d = ( SetCat ` 1o ) /\ f = ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) ) -> ( e UP d ) = ( e UP ( SetCat ` 1o ) ) ) |
| 18 |
|
simpr |
|- ( ( d = ( SetCat ` 1o ) /\ f = ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) ) -> f = ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) ) |
| 19 |
16
|
fvoveq1d |
|- ( ( d = ( SetCat ` 1o ) /\ f = ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) ) -> ( 1st ` ( d DiagFunc e ) ) = ( 1st ` ( ( SetCat ` 1o ) DiagFunc e ) ) ) |
| 20 |
19
|
fveq1d |
|- ( ( d = ( SetCat ` 1o ) /\ f = ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) ) -> ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) = ( ( 1st ` ( ( SetCat ` 1o ) DiagFunc e ) ) ` (/) ) ) |
| 21 |
18 20
|
eqtrd |
|- ( ( d = ( SetCat ` 1o ) /\ f = ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) ) -> f = ( ( 1st ` ( ( SetCat ` 1o ) DiagFunc e ) ) ` (/) ) ) |
| 22 |
|
eqidd |
|- ( ( d = ( SetCat ` 1o ) /\ f = ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) ) -> (/) = (/) ) |
| 23 |
17 21 22
|
oveq123d |
|- ( ( d = ( SetCat ` 1o ) /\ f = ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) ) -> ( f ( e UP d ) (/) ) = ( ( ( 1st ` ( ( SetCat ` 1o ) DiagFunc e ) ) ` (/) ) ( e UP ( SetCat ` 1o ) ) (/) ) ) |
| 24 |
23
|
dmeqd |
|- ( ( d = ( SetCat ` 1o ) /\ f = ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) ) -> dom ( f ( e UP d ) (/) ) = dom ( ( ( 1st ` ( ( SetCat ` 1o ) DiagFunc e ) ) ` (/) ) ( e UP ( SetCat ` 1o ) ) (/) ) ) |
| 25 |
15 24
|
csbied |
|- ( d = ( SetCat ` 1o ) -> [_ ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) / f ]_ dom ( f ( e UP d ) (/) ) = dom ( ( ( 1st ` ( ( SetCat ` 1o ) DiagFunc e ) ) ` (/) ) ( e UP ( SetCat ` 1o ) ) (/) ) ) |
| 26 |
14 25
|
csbie |
|- [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) / f ]_ dom ( f ( e UP d ) (/) ) = dom ( ( ( 1st ` ( ( SetCat ` 1o ) DiagFunc e ) ) ` (/) ) ( e UP ( SetCat ` 1o ) ) (/) ) |
| 27 |
13 26
|
eqtr4i |
|- ( InitO ` e ) = [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) / f ]_ dom ( f ( e UP d ) (/) ) |
| 28 |
|
oveq2 |
|- ( c = e -> ( d DiagFunc c ) = ( d DiagFunc e ) ) |
| 29 |
28
|
fveq2d |
|- ( c = e -> ( 1st ` ( d DiagFunc c ) ) = ( 1st ` ( d DiagFunc e ) ) ) |
| 30 |
29
|
fveq1d |
|- ( c = e -> ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) = ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) ) |
| 31 |
|
oveq1 |
|- ( c = e -> ( c UP d ) = ( e UP d ) ) |
| 32 |
31
|
oveqd |
|- ( c = e -> ( f ( c UP d ) (/) ) = ( f ( e UP d ) (/) ) ) |
| 33 |
32
|
dmeqd |
|- ( c = e -> dom ( f ( c UP d ) (/) ) = dom ( f ( e UP d ) (/) ) ) |
| 34 |
30 33
|
csbeq12dv |
|- ( c = e -> [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) = [_ ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) / f ]_ dom ( f ( e UP d ) (/) ) ) |
| 35 |
34
|
csbeq2dv |
|- ( c = e -> [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) = [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) / f ]_ dom ( f ( e UP d ) (/) ) ) |
| 36 |
|
ovex |
|- ( f ( e UP d ) (/) ) e. _V |
| 37 |
36
|
dmex |
|- dom ( f ( e UP d ) (/) ) e. _V |
| 38 |
37
|
csbex |
|- [_ ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) / f ]_ dom ( f ( e UP d ) (/) ) e. _V |
| 39 |
38
|
csbex |
|- [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) / f ]_ dom ( f ( e UP d ) (/) ) e. _V |
| 40 |
35 6 39
|
fvmpt |
|- ( e e. Cat -> ( ( c e. Cat |-> [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) ) ` e ) = [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc e ) ) ` (/) ) / f ]_ dom ( f ( e UP d ) (/) ) ) |
| 41 |
27 40
|
eqtr4id |
|- ( e e. Cat -> ( InitO ` e ) = ( ( c e. Cat |-> [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) ) ` e ) ) |
| 42 |
9 41
|
mprgbir |
|- InitO = ( c e. Cat |-> [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc c ) ) ` (/) ) / f ]_ dom ( f ( c UP d ) (/) ) ) |