| Step |
Hyp |
Ref |
Expression |
| 1 |
|
initofn |
⊢ InitO Fn Cat |
| 2 |
|
ovex |
⊢ ( 𝑓 ( 𝑐 UP 𝑑 ) ∅ ) ∈ V |
| 3 |
2
|
dmex |
⊢ dom ( 𝑓 ( 𝑐 UP 𝑑 ) ∅ ) ∈ V |
| 4 |
3
|
csbex |
⊢ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑐 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑐 UP 𝑑 ) ∅ ) ∈ V |
| 5 |
4
|
csbex |
⊢ ⦋ ( SetCat ‘ 1o ) / 𝑑 ⦌ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑐 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑐 UP 𝑑 ) ∅ ) ∈ V |
| 6 |
|
eqid |
⊢ ( 𝑐 ∈ Cat ↦ ⦋ ( SetCat ‘ 1o ) / 𝑑 ⦌ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑐 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑐 UP 𝑑 ) ∅ ) ) = ( 𝑐 ∈ Cat ↦ ⦋ ( SetCat ‘ 1o ) / 𝑑 ⦌ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑐 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑐 UP 𝑑 ) ∅ ) ) |
| 7 |
5 6
|
fnmpti |
⊢ ( 𝑐 ∈ Cat ↦ ⦋ ( SetCat ‘ 1o ) / 𝑑 ⦌ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑐 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑐 UP 𝑑 ) ∅ ) ) Fn Cat |
| 8 |
|
eqfnfv |
⊢ ( ( InitO Fn Cat ∧ ( 𝑐 ∈ Cat ↦ ⦋ ( SetCat ‘ 1o ) / 𝑑 ⦌ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑐 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑐 UP 𝑑 ) ∅ ) ) Fn Cat ) → ( InitO = ( 𝑐 ∈ Cat ↦ ⦋ ( SetCat ‘ 1o ) / 𝑑 ⦌ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑐 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑐 UP 𝑑 ) ∅ ) ) ↔ ∀ 𝑒 ∈ Cat ( InitO ‘ 𝑒 ) = ( ( 𝑐 ∈ Cat ↦ ⦋ ( SetCat ‘ 1o ) / 𝑑 ⦌ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑐 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑐 UP 𝑑 ) ∅ ) ) ‘ 𝑒 ) ) ) |
| 9 |
1 7 8
|
mp2an |
⊢ ( InitO = ( 𝑐 ∈ Cat ↦ ⦋ ( SetCat ‘ 1o ) / 𝑑 ⦌ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑐 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑐 UP 𝑑 ) ∅ ) ) ↔ ∀ 𝑒 ∈ Cat ( InitO ‘ 𝑒 ) = ( ( 𝑐 ∈ Cat ↦ ⦋ ( SetCat ‘ 1o ) / 𝑑 ⦌ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑐 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑐 UP 𝑑 ) ∅ ) ) ‘ 𝑒 ) ) |
| 10 |
|
eqid |
⊢ ( SetCat ‘ 1o ) = ( SetCat ‘ 1o ) |
| 11 |
|
eqid |
⊢ ( ( 1st ‘ ( ( SetCat ‘ 1o ) Δfunc 𝑒 ) ) ‘ ∅ ) = ( ( 1st ‘ ( ( SetCat ‘ 1o ) Δfunc 𝑒 ) ) ‘ ∅ ) |
| 12 |
10 11
|
isinito3 |
⊢ ( 𝑥 ∈ ( InitO ‘ 𝑒 ) ↔ 𝑥 ∈ dom ( ( ( 1st ‘ ( ( SetCat ‘ 1o ) Δfunc 𝑒 ) ) ‘ ∅ ) ( 𝑒 UP ( SetCat ‘ 1o ) ) ∅ ) ) |
| 13 |
12
|
eqriv |
⊢ ( InitO ‘ 𝑒 ) = dom ( ( ( 1st ‘ ( ( SetCat ‘ 1o ) Δfunc 𝑒 ) ) ‘ ∅ ) ( 𝑒 UP ( SetCat ‘ 1o ) ) ∅ ) |
| 14 |
|
fvex |
⊢ ( SetCat ‘ 1o ) ∈ V |
| 15 |
|
fvexd |
⊢ ( 𝑑 = ( SetCat ‘ 1o ) → ( ( 1st ‘ ( 𝑑 Δfunc 𝑒 ) ) ‘ ∅ ) ∈ V ) |
| 16 |
|
simpl |
⊢ ( ( 𝑑 = ( SetCat ‘ 1o ) ∧ 𝑓 = ( ( 1st ‘ ( 𝑑 Δfunc 𝑒 ) ) ‘ ∅ ) ) → 𝑑 = ( SetCat ‘ 1o ) ) |
| 17 |
16
|
oveq2d |
⊢ ( ( 𝑑 = ( SetCat ‘ 1o ) ∧ 𝑓 = ( ( 1st ‘ ( 𝑑 Δfunc 𝑒 ) ) ‘ ∅ ) ) → ( 𝑒 UP 𝑑 ) = ( 𝑒 UP ( SetCat ‘ 1o ) ) ) |
| 18 |
|
simpr |
⊢ ( ( 𝑑 = ( SetCat ‘ 1o ) ∧ 𝑓 = ( ( 1st ‘ ( 𝑑 Δfunc 𝑒 ) ) ‘ ∅ ) ) → 𝑓 = ( ( 1st ‘ ( 𝑑 Δfunc 𝑒 ) ) ‘ ∅ ) ) |
| 19 |
16
|
fvoveq1d |
⊢ ( ( 𝑑 = ( SetCat ‘ 1o ) ∧ 𝑓 = ( ( 1st ‘ ( 𝑑 Δfunc 𝑒 ) ) ‘ ∅ ) ) → ( 1st ‘ ( 𝑑 Δfunc 𝑒 ) ) = ( 1st ‘ ( ( SetCat ‘ 1o ) Δfunc 𝑒 ) ) ) |
| 20 |
19
|
fveq1d |
⊢ ( ( 𝑑 = ( SetCat ‘ 1o ) ∧ 𝑓 = ( ( 1st ‘ ( 𝑑 Δfunc 𝑒 ) ) ‘ ∅ ) ) → ( ( 1st ‘ ( 𝑑 Δfunc 𝑒 ) ) ‘ ∅ ) = ( ( 1st ‘ ( ( SetCat ‘ 1o ) Δfunc 𝑒 ) ) ‘ ∅ ) ) |
| 21 |
18 20
|
eqtrd |
⊢ ( ( 𝑑 = ( SetCat ‘ 1o ) ∧ 𝑓 = ( ( 1st ‘ ( 𝑑 Δfunc 𝑒 ) ) ‘ ∅ ) ) → 𝑓 = ( ( 1st ‘ ( ( SetCat ‘ 1o ) Δfunc 𝑒 ) ) ‘ ∅ ) ) |
| 22 |
|
eqidd |
⊢ ( ( 𝑑 = ( SetCat ‘ 1o ) ∧ 𝑓 = ( ( 1st ‘ ( 𝑑 Δfunc 𝑒 ) ) ‘ ∅ ) ) → ∅ = ∅ ) |
| 23 |
17 21 22
|
oveq123d |
⊢ ( ( 𝑑 = ( SetCat ‘ 1o ) ∧ 𝑓 = ( ( 1st ‘ ( 𝑑 Δfunc 𝑒 ) ) ‘ ∅ ) ) → ( 𝑓 ( 𝑒 UP 𝑑 ) ∅ ) = ( ( ( 1st ‘ ( ( SetCat ‘ 1o ) Δfunc 𝑒 ) ) ‘ ∅ ) ( 𝑒 UP ( SetCat ‘ 1o ) ) ∅ ) ) |
| 24 |
23
|
dmeqd |
⊢ ( ( 𝑑 = ( SetCat ‘ 1o ) ∧ 𝑓 = ( ( 1st ‘ ( 𝑑 Δfunc 𝑒 ) ) ‘ ∅ ) ) → dom ( 𝑓 ( 𝑒 UP 𝑑 ) ∅ ) = dom ( ( ( 1st ‘ ( ( SetCat ‘ 1o ) Δfunc 𝑒 ) ) ‘ ∅ ) ( 𝑒 UP ( SetCat ‘ 1o ) ) ∅ ) ) |
| 25 |
15 24
|
csbied |
⊢ ( 𝑑 = ( SetCat ‘ 1o ) → ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑒 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑒 UP 𝑑 ) ∅ ) = dom ( ( ( 1st ‘ ( ( SetCat ‘ 1o ) Δfunc 𝑒 ) ) ‘ ∅ ) ( 𝑒 UP ( SetCat ‘ 1o ) ) ∅ ) ) |
| 26 |
14 25
|
csbie |
⊢ ⦋ ( SetCat ‘ 1o ) / 𝑑 ⦌ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑒 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑒 UP 𝑑 ) ∅ ) = dom ( ( ( 1st ‘ ( ( SetCat ‘ 1o ) Δfunc 𝑒 ) ) ‘ ∅ ) ( 𝑒 UP ( SetCat ‘ 1o ) ) ∅ ) |
| 27 |
13 26
|
eqtr4i |
⊢ ( InitO ‘ 𝑒 ) = ⦋ ( SetCat ‘ 1o ) / 𝑑 ⦌ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑒 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑒 UP 𝑑 ) ∅ ) |
| 28 |
|
oveq2 |
⊢ ( 𝑐 = 𝑒 → ( 𝑑 Δfunc 𝑐 ) = ( 𝑑 Δfunc 𝑒 ) ) |
| 29 |
28
|
fveq2d |
⊢ ( 𝑐 = 𝑒 → ( 1st ‘ ( 𝑑 Δfunc 𝑐 ) ) = ( 1st ‘ ( 𝑑 Δfunc 𝑒 ) ) ) |
| 30 |
29
|
fveq1d |
⊢ ( 𝑐 = 𝑒 → ( ( 1st ‘ ( 𝑑 Δfunc 𝑐 ) ) ‘ ∅ ) = ( ( 1st ‘ ( 𝑑 Δfunc 𝑒 ) ) ‘ ∅ ) ) |
| 31 |
|
oveq1 |
⊢ ( 𝑐 = 𝑒 → ( 𝑐 UP 𝑑 ) = ( 𝑒 UP 𝑑 ) ) |
| 32 |
31
|
oveqd |
⊢ ( 𝑐 = 𝑒 → ( 𝑓 ( 𝑐 UP 𝑑 ) ∅ ) = ( 𝑓 ( 𝑒 UP 𝑑 ) ∅ ) ) |
| 33 |
32
|
dmeqd |
⊢ ( 𝑐 = 𝑒 → dom ( 𝑓 ( 𝑐 UP 𝑑 ) ∅ ) = dom ( 𝑓 ( 𝑒 UP 𝑑 ) ∅ ) ) |
| 34 |
30 33
|
csbeq12dv |
⊢ ( 𝑐 = 𝑒 → ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑐 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑐 UP 𝑑 ) ∅ ) = ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑒 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑒 UP 𝑑 ) ∅ ) ) |
| 35 |
34
|
csbeq2dv |
⊢ ( 𝑐 = 𝑒 → ⦋ ( SetCat ‘ 1o ) / 𝑑 ⦌ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑐 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑐 UP 𝑑 ) ∅ ) = ⦋ ( SetCat ‘ 1o ) / 𝑑 ⦌ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑒 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑒 UP 𝑑 ) ∅ ) ) |
| 36 |
|
ovex |
⊢ ( 𝑓 ( 𝑒 UP 𝑑 ) ∅ ) ∈ V |
| 37 |
36
|
dmex |
⊢ dom ( 𝑓 ( 𝑒 UP 𝑑 ) ∅ ) ∈ V |
| 38 |
37
|
csbex |
⊢ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑒 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑒 UP 𝑑 ) ∅ ) ∈ V |
| 39 |
38
|
csbex |
⊢ ⦋ ( SetCat ‘ 1o ) / 𝑑 ⦌ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑒 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑒 UP 𝑑 ) ∅ ) ∈ V |
| 40 |
35 6 39
|
fvmpt |
⊢ ( 𝑒 ∈ Cat → ( ( 𝑐 ∈ Cat ↦ ⦋ ( SetCat ‘ 1o ) / 𝑑 ⦌ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑐 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑐 UP 𝑑 ) ∅ ) ) ‘ 𝑒 ) = ⦋ ( SetCat ‘ 1o ) / 𝑑 ⦌ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑒 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑒 UP 𝑑 ) ∅ ) ) |
| 41 |
27 40
|
eqtr4id |
⊢ ( 𝑒 ∈ Cat → ( InitO ‘ 𝑒 ) = ( ( 𝑐 ∈ Cat ↦ ⦋ ( SetCat ‘ 1o ) / 𝑑 ⦌ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑐 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑐 UP 𝑑 ) ∅ ) ) ‘ 𝑒 ) ) |
| 42 |
9 41
|
mprgbir |
⊢ InitO = ( 𝑐 ∈ Cat ↦ ⦋ ( SetCat ‘ 1o ) / 𝑑 ⦌ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑐 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑐 UP 𝑑 ) ∅ ) ) |