| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dftermo2 |
⊢ TermO = ( 𝑐 ∈ Cat ↦ ( InitO ‘ ( oppCat ‘ 𝑐 ) ) ) |
| 2 |
|
eqid |
⊢ ( oppCat ‘ 𝑐 ) = ( oppCat ‘ 𝑐 ) |
| 3 |
2
|
oppccat |
⊢ ( 𝑐 ∈ Cat → ( oppCat ‘ 𝑐 ) ∈ Cat ) |
| 4 |
|
ovex |
⊢ ( 𝑓 ( 𝑜 UP 𝑑 ) ∅ ) ∈ V |
| 5 |
4
|
dmex |
⊢ dom ( 𝑓 ( 𝑜 UP 𝑑 ) ∅ ) ∈ V |
| 6 |
5
|
csbex |
⊢ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑜 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑜 UP 𝑑 ) ∅ ) ∈ V |
| 7 |
6
|
csbex |
⊢ ⦋ ( SetCat ‘ 1o ) / 𝑑 ⦌ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑜 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑜 UP 𝑑 ) ∅ ) ∈ V |
| 8 |
7
|
csbex |
⊢ ⦋ ( oppCat ‘ 𝑐 ) / 𝑜 ⦌ ⦋ ( SetCat ‘ 1o ) / 𝑑 ⦌ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑜 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑜 UP 𝑑 ) ∅ ) ∈ V |
| 9 |
|
dfinito4 |
⊢ InitO = ( 𝑜 ∈ Cat ↦ ⦋ ( SetCat ‘ 1o ) / 𝑑 ⦌ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑜 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑜 UP 𝑑 ) ∅ ) ) |
| 10 |
9
|
fvmpts |
⊢ ( ( ( oppCat ‘ 𝑐 ) ∈ Cat ∧ ⦋ ( oppCat ‘ 𝑐 ) / 𝑜 ⦌ ⦋ ( SetCat ‘ 1o ) / 𝑑 ⦌ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑜 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑜 UP 𝑑 ) ∅ ) ∈ V ) → ( InitO ‘ ( oppCat ‘ 𝑐 ) ) = ⦋ ( oppCat ‘ 𝑐 ) / 𝑜 ⦌ ⦋ ( SetCat ‘ 1o ) / 𝑑 ⦌ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑜 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑜 UP 𝑑 ) ∅ ) ) |
| 11 |
3 8 10
|
sylancl |
⊢ ( 𝑐 ∈ Cat → ( InitO ‘ ( oppCat ‘ 𝑐 ) ) = ⦋ ( oppCat ‘ 𝑐 ) / 𝑜 ⦌ ⦋ ( SetCat ‘ 1o ) / 𝑑 ⦌ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑜 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑜 UP 𝑑 ) ∅ ) ) |
| 12 |
11
|
mpteq2ia |
⊢ ( 𝑐 ∈ Cat ↦ ( InitO ‘ ( oppCat ‘ 𝑐 ) ) ) = ( 𝑐 ∈ Cat ↦ ⦋ ( oppCat ‘ 𝑐 ) / 𝑜 ⦌ ⦋ ( SetCat ‘ 1o ) / 𝑑 ⦌ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑜 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑜 UP 𝑑 ) ∅ ) ) |
| 13 |
1 12
|
eqtri |
⊢ TermO = ( 𝑐 ∈ Cat ↦ ⦋ ( oppCat ‘ 𝑐 ) / 𝑜 ⦌ ⦋ ( SetCat ‘ 1o ) / 𝑑 ⦌ ⦋ ( ( 1st ‘ ( 𝑑 Δfunc 𝑜 ) ) ‘ ∅ ) / 𝑓 ⦌ dom ( 𝑓 ( 𝑜 UP 𝑑 ) ∅ ) ) |