| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termcpropd.1 |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 2 |
|
termcpropd.2 |
⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 3 |
|
termcpropd.3 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 4 |
|
termcpropd.4 |
⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) |
| 5 |
1 2 3 4
|
thincpropd |
⊢ ( 𝜑 → ( 𝐶 ∈ ThinCat ↔ 𝐷 ∈ ThinCat ) ) |
| 6 |
1
|
homfeqbas |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 7 |
6
|
eqeq1d |
⊢ ( 𝜑 → ( ( Base ‘ 𝐶 ) = { 𝑥 } ↔ ( Base ‘ 𝐷 ) = { 𝑥 } ) ) |
| 8 |
7
|
exbidv |
⊢ ( 𝜑 → ( ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } ↔ ∃ 𝑥 ( Base ‘ 𝐷 ) = { 𝑥 } ) ) |
| 9 |
5 8
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐶 ∈ ThinCat ∧ ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } ) ↔ ( 𝐷 ∈ ThinCat ∧ ∃ 𝑥 ( Base ‘ 𝐷 ) = { 𝑥 } ) ) ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 11 |
10
|
istermc |
⊢ ( 𝐶 ∈ TermCat ↔ ( 𝐶 ∈ ThinCat ∧ ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } ) ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 13 |
12
|
istermc |
⊢ ( 𝐷 ∈ TermCat ↔ ( 𝐷 ∈ ThinCat ∧ ∃ 𝑥 ( Base ‘ 𝐷 ) = { 𝑥 } ) ) |
| 14 |
9 11 13
|
3bitr4g |
⊢ ( 𝜑 → ( 𝐶 ∈ TermCat ↔ 𝐷 ∈ TermCat ) ) |