Metamath Proof Explorer


Theorem termcpropd

Description: Two structures with the same base, hom-sets and composition operation are either both terminal categories or neither. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypotheses termcpropd.1 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
termcpropd.2 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
termcpropd.3 ( 𝜑𝐶𝑉 )
termcpropd.4 ( 𝜑𝐷𝑊 )
Assertion termcpropd ( 𝜑 → ( 𝐶 ∈ TermCat ↔ 𝐷 ∈ TermCat ) )

Proof

Step Hyp Ref Expression
1 termcpropd.1 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
2 termcpropd.2 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
3 termcpropd.3 ( 𝜑𝐶𝑉 )
4 termcpropd.4 ( 𝜑𝐷𝑊 )
5 1 2 3 4 thincpropd ( 𝜑 → ( 𝐶 ∈ ThinCat ↔ 𝐷 ∈ ThinCat ) )
6 1 homfeqbas ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) )
7 6 eqeq1d ( 𝜑 → ( ( Base ‘ 𝐶 ) = { 𝑥 } ↔ ( Base ‘ 𝐷 ) = { 𝑥 } ) )
8 7 exbidv ( 𝜑 → ( ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } ↔ ∃ 𝑥 ( Base ‘ 𝐷 ) = { 𝑥 } ) )
9 5 8 anbi12d ( 𝜑 → ( ( 𝐶 ∈ ThinCat ∧ ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } ) ↔ ( 𝐷 ∈ ThinCat ∧ ∃ 𝑥 ( Base ‘ 𝐷 ) = { 𝑥 } ) ) )
10 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
11 10 istermc ( 𝐶 ∈ TermCat ↔ ( 𝐶 ∈ ThinCat ∧ ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } ) )
12 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
13 12 istermc ( 𝐷 ∈ TermCat ↔ ( 𝐷 ∈ ThinCat ∧ ∃ 𝑥 ( Base ‘ 𝐷 ) = { 𝑥 } ) )
14 9 11 13 3bitr4g ( 𝜑 → ( 𝐶 ∈ TermCat ↔ 𝐷 ∈ TermCat ) )