Description: The opposite category of a terminal category has the same base and hom-sets as the original category. (Contributed by Zhi Wang, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcterm.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| oppcterm.c | ⊢ ( 𝜑 → 𝐶 ∈ TermCat ) | ||
| Assertion | oppctermhom | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝑂 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcterm.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | oppcterm.c | ⊢ ( 𝜑 → 𝐶 ∈ TermCat ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 4 | 2 3 | termcbas | ⊢ ( 𝜑 → ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } ) |
| 5 | id | ⊢ ( ( Base ‘ 𝐶 ) = { 𝑥 } → ( Base ‘ 𝐶 ) = { 𝑥 } ) | |
| 6 | 1 3 5 | oppcmndc | ⊢ ( ( Base ‘ 𝐶 ) = { 𝑥 } → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝑂 ) ) |
| 7 | 6 | exlimiv | ⊢ ( ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝑂 ) ) |
| 8 | 4 7 | syl | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝑂 ) ) |