Metamath Proof Explorer


Theorem oppctermhom

Description: The opposite category of a terminal category has the same base and hom-sets as the original category. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypotheses oppcterm.o 𝑂 = ( oppCat ‘ 𝐶 )
oppcterm.c ( 𝜑𝐶 ∈ TermCat )
Assertion oppctermhom ( 𝜑 → ( Homf𝐶 ) = ( Homf𝑂 ) )

Proof

Step Hyp Ref Expression
1 oppcterm.o 𝑂 = ( oppCat ‘ 𝐶 )
2 oppcterm.c ( 𝜑𝐶 ∈ TermCat )
3 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
4 2 3 termcbas ( 𝜑 → ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } )
5 id ( ( Base ‘ 𝐶 ) = { 𝑥 } → ( Base ‘ 𝐶 ) = { 𝑥 } )
6 1 3 5 oppcmndc ( ( Base ‘ 𝐶 ) = { 𝑥 } → ( Homf𝐶 ) = ( Homf𝑂 ) )
7 6 exlimiv ( ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } → ( Homf𝐶 ) = ( Homf𝑂 ) )
8 4 7 syl ( 𝜑 → ( Homf𝐶 ) = ( Homf𝑂 ) )