Metamath Proof Explorer


Theorem oppctermhom

Description: The opposite category of a terminal category has the same base and hom-sets as the original category. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypotheses oppcterm.o
|- O = ( oppCat ` C )
oppcterm.c
|- ( ph -> C e. TermCat )
Assertion oppctermhom
|- ( ph -> ( Homf ` C ) = ( Homf ` O ) )

Proof

Step Hyp Ref Expression
1 oppcterm.o
 |-  O = ( oppCat ` C )
2 oppcterm.c
 |-  ( ph -> C e. TermCat )
3 eqid
 |-  ( Base ` C ) = ( Base ` C )
4 2 3 termcbas
 |-  ( ph -> E. x ( Base ` C ) = { x } )
5 id
 |-  ( ( Base ` C ) = { x } -> ( Base ` C ) = { x } )
6 1 3 5 oppcmndc
 |-  ( ( Base ` C ) = { x } -> ( Homf ` C ) = ( Homf ` O ) )
7 6 exlimiv
 |-  ( E. x ( Base ` C ) = { x } -> ( Homf ` C ) = ( Homf ` O ) )
8 4 7 syl
 |-  ( ph -> ( Homf ` C ) = ( Homf ` O ) )