Description: The opposite category of a terminal category has the same base and hom-sets as the original category. (Contributed by Zhi Wang, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcterm.o | |- O = ( oppCat ` C ) |
|
| oppcterm.c | |- ( ph -> C e. TermCat ) |
||
| Assertion | oppctermhom | |- ( ph -> ( Homf ` C ) = ( Homf ` O ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcterm.o | |- O = ( oppCat ` C ) |
|
| 2 | oppcterm.c | |- ( ph -> C e. TermCat ) |
|
| 3 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 4 | 2 3 | termcbas | |- ( ph -> E. x ( Base ` C ) = { x } ) |
| 5 | id | |- ( ( Base ` C ) = { x } -> ( Base ` C ) = { x } ) |
|
| 6 | 1 3 5 | oppcmndc | |- ( ( Base ` C ) = { x } -> ( Homf ` C ) = ( Homf ` O ) ) |
| 7 | 6 | exlimiv | |- ( E. x ( Base ` C ) = { x } -> ( Homf ` C ) = ( Homf ` O ) ) |
| 8 | 4 7 | syl | |- ( ph -> ( Homf ` C ) = ( Homf ` O ) ) |