Metamath Proof Explorer


Theorem oppcmndc

Description: The opposite category of a category whose base set is a singleton or an empty set has the same base and hom-sets as the original category. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypotheses oppcendc.o
|- O = ( oppCat ` C )
oppcendc.b
|- B = ( Base ` C )
oppcmndc.x
|- ( ph -> B = { X } )
Assertion oppcmndc
|- ( ph -> ( Homf ` C ) = ( Homf ` O ) )

Proof

Step Hyp Ref Expression
1 oppcendc.o
 |-  O = ( oppCat ` C )
2 oppcendc.b
 |-  B = ( Base ` C )
3 oppcmndc.x
 |-  ( ph -> B = { X } )
4 eqid
 |-  ( Hom ` C ) = ( Hom ` C )
5 3 oppcmndclem
 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x =/= y -> ( x ( Hom ` C ) y ) = (/) ) )
6 1 2 4 5 oppcendc
 |-  ( ph -> ( Homf ` C ) = ( Homf ` O ) )