Description: The opposite category of a category whose base set is a singleton or an empty set has the same base and hom-sets as the original category. (Contributed by Zhi Wang, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcendc.o | |- O = ( oppCat ` C ) |
|
| oppcendc.b | |- B = ( Base ` C ) |
||
| oppcmndc.x | |- ( ph -> B = { X } ) |
||
| Assertion | oppcmndc | |- ( ph -> ( Homf ` C ) = ( Homf ` O ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcendc.o | |- O = ( oppCat ` C ) |
|
| 2 | oppcendc.b | |- B = ( Base ` C ) |
|
| 3 | oppcmndc.x | |- ( ph -> B = { X } ) |
|
| 4 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 5 | 3 | oppcmndclem | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x =/= y -> ( x ( Hom ` C ) y ) = (/) ) ) |
| 6 | 1 2 4 5 | oppcendc | |- ( ph -> ( Homf ` C ) = ( Homf ` O ) ) |