Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Categories
Opposite category
oppcmndc
Metamath Proof Explorer
Description: The opposite category of a category whose base set is a singleton or an
empty set has the same base and hom-sets as the original category.
(Contributed by Zhi Wang , 16-Oct-2025)
Ref
Expression
Hypotheses
oppcendc.o
⊢ 𝑂 = ( oppCat ‘ 𝐶 )
oppcendc.b
⊢ 𝐵 = ( Base ‘ 𝐶 )
oppcmndc.x
⊢ ( 𝜑 → 𝐵 = { 𝑋 } )
Assertion
oppcmndc
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝑂 ) )
Proof
Step
Hyp
Ref
Expression
1
oppcendc.o
⊢ 𝑂 = ( oppCat ‘ 𝐶 )
2
oppcendc.b
⊢ 𝐵 = ( Base ‘ 𝐶 )
3
oppcmndc.x
⊢ ( 𝜑 → 𝐵 = { 𝑋 } )
4
eqid
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
5
3
oppcmndclem
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ≠ 𝑦 → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ∅ ) )
6
1 2 4 5
oppcendc
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝑂 ) )