Metamath Proof Explorer


Theorem oppcmndc

Description: The opposite category of a category whose base set is a singleton or an empty set has the same base and hom-sets as the original category. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypotheses oppcendc.o 𝑂 = ( oppCat ‘ 𝐶 )
oppcendc.b 𝐵 = ( Base ‘ 𝐶 )
oppcmndc.x ( 𝜑𝐵 = { 𝑋 } )
Assertion oppcmndc ( 𝜑 → ( Homf𝐶 ) = ( Homf𝑂 ) )

Proof

Step Hyp Ref Expression
1 oppcendc.o 𝑂 = ( oppCat ‘ 𝐶 )
2 oppcendc.b 𝐵 = ( Base ‘ 𝐶 )
3 oppcmndc.x ( 𝜑𝐵 = { 𝑋 } )
4 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
5 3 oppcmndclem ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥𝑦 → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ∅ ) )
6 1 2 4 5 oppcendc ( 𝜑 → ( Homf𝐶 ) = ( Homf𝑂 ) )