| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppcmndclem.1 |
⊢ ( 𝜑 → 𝐵 = { 𝐴 } ) |
| 2 |
|
df-ne |
⊢ ( 𝑋 ≠ 𝑌 ↔ ¬ 𝑋 = 𝑌 ) |
| 3 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = 𝑦 ↔ 𝑋 = 𝑦 ) ) |
| 4 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 = 𝑦 ↔ 𝑋 = 𝑌 ) ) |
| 5 |
|
mosn |
⊢ ( 𝐵 = { 𝐴 } → ∃* 𝑥 𝑥 ∈ 𝐵 ) |
| 6 |
1 5
|
syl |
⊢ ( 𝜑 → ∃* 𝑥 𝑥 ∈ 𝐵 ) |
| 7 |
|
moel |
⊢ ( ∃* 𝑥 𝑥 ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝑥 = 𝑦 ) |
| 8 |
6 7
|
sylib |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝑥 = 𝑦 ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝑥 = 𝑦 ) |
| 10 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
| 11 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
| 12 |
3 4 9 10 11
|
rspc2dv |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 = 𝑌 ) |
| 13 |
12
|
pm2.24d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ¬ 𝑋 = 𝑌 → 𝜓 ) ) |
| 14 |
2 13
|
biimtrid |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ≠ 𝑌 → 𝜓 ) ) |