| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppcendc.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
oppcendc.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
oppcendc.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 4 |
|
oppcendc.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |
| 5 |
4
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |
| 6 |
|
eqeq12 |
⊢ ( ( 𝑥 = 𝑝 ∧ 𝑦 = 𝑞 ) → ( 𝑥 = 𝑦 ↔ 𝑝 = 𝑞 ) ) |
| 7 |
6
|
necon3bid |
⊢ ( ( 𝑥 = 𝑝 ∧ 𝑦 = 𝑞 ) → ( 𝑥 ≠ 𝑦 ↔ 𝑝 ≠ 𝑞 ) ) |
| 8 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑝 ∧ 𝑦 = 𝑞 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑝 𝐻 𝑞 ) ) |
| 9 |
8
|
eqeq1d |
⊢ ( ( 𝑥 = 𝑝 ∧ 𝑦 = 𝑞 ) → ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( 𝑝 𝐻 𝑞 ) = ∅ ) ) |
| 10 |
7 9
|
imbi12d |
⊢ ( ( 𝑥 = 𝑝 ∧ 𝑦 = 𝑞 ) → ( ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) ↔ ( 𝑝 ≠ 𝑞 → ( 𝑝 𝐻 𝑞 ) = ∅ ) ) ) |
| 11 |
10
|
rspc2gv |
⊢ ( ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) → ( 𝑝 ≠ 𝑞 → ( 𝑝 𝐻 𝑞 ) = ∅ ) ) ) |
| 12 |
5 11
|
mpan9 |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ( 𝑝 ≠ 𝑞 → ( 𝑝 𝐻 𝑞 ) = ∅ ) ) |
| 13 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → 𝑞 ∈ 𝐵 ) |
| 14 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → 𝑝 ∈ 𝐵 ) |
| 15 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |
| 16 |
|
eqeq12 |
⊢ ( ( 𝑥 = 𝑞 ∧ 𝑦 = 𝑝 ) → ( 𝑥 = 𝑦 ↔ 𝑞 = 𝑝 ) ) |
| 17 |
|
equcom |
⊢ ( 𝑝 = 𝑞 ↔ 𝑞 = 𝑝 ) |
| 18 |
16 17
|
bitr4di |
⊢ ( ( 𝑥 = 𝑞 ∧ 𝑦 = 𝑝 ) → ( 𝑥 = 𝑦 ↔ 𝑝 = 𝑞 ) ) |
| 19 |
18
|
necon3bid |
⊢ ( ( 𝑥 = 𝑞 ∧ 𝑦 = 𝑝 ) → ( 𝑥 ≠ 𝑦 ↔ 𝑝 ≠ 𝑞 ) ) |
| 20 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑞 ∧ 𝑦 = 𝑝 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑞 𝐻 𝑝 ) ) |
| 21 |
20
|
eqeq1d |
⊢ ( ( 𝑥 = 𝑞 ∧ 𝑦 = 𝑝 ) → ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( 𝑞 𝐻 𝑝 ) = ∅ ) ) |
| 22 |
19 21
|
imbi12d |
⊢ ( ( 𝑥 = 𝑞 ∧ 𝑦 = 𝑝 ) → ( ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) ↔ ( 𝑝 ≠ 𝑞 → ( 𝑞 𝐻 𝑝 ) = ∅ ) ) ) |
| 23 |
22
|
rspc2gv |
⊢ ( ( 𝑞 ∈ 𝐵 ∧ 𝑝 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) → ( 𝑝 ≠ 𝑞 → ( 𝑞 𝐻 𝑝 ) = ∅ ) ) ) |
| 24 |
23
|
imp |
⊢ ( ( ( 𝑞 ∈ 𝐵 ∧ 𝑝 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≠ 𝑦 → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) → ( 𝑝 ≠ 𝑞 → ( 𝑞 𝐻 𝑝 ) = ∅ ) ) |
| 25 |
13 14 15 24
|
syl21anc |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ( 𝑝 ≠ 𝑞 → ( 𝑞 𝐻 𝑝 ) = ∅ ) ) |
| 26 |
12 25
|
jcad |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ( 𝑝 ≠ 𝑞 → ( ( 𝑝 𝐻 𝑞 ) = ∅ ∧ ( 𝑞 𝐻 𝑝 ) = ∅ ) ) ) |
| 27 |
|
nne |
⊢ ( ¬ 𝑝 ≠ 𝑞 ↔ 𝑝 = 𝑞 ) |
| 28 |
|
id |
⊢ ( 𝑝 = 𝑞 → 𝑝 = 𝑞 ) |
| 29 |
|
equcomi |
⊢ ( 𝑝 = 𝑞 → 𝑞 = 𝑝 ) |
| 30 |
28 29
|
oveq12d |
⊢ ( 𝑝 = 𝑞 → ( 𝑝 𝐻 𝑞 ) = ( 𝑞 𝐻 𝑝 ) ) |
| 31 |
27 30
|
sylbi |
⊢ ( ¬ 𝑝 ≠ 𝑞 → ( 𝑝 𝐻 𝑞 ) = ( 𝑞 𝐻 𝑝 ) ) |
| 32 |
|
eqtr3 |
⊢ ( ( ( 𝑝 𝐻 𝑞 ) = ∅ ∧ ( 𝑞 𝐻 𝑝 ) = ∅ ) → ( 𝑝 𝐻 𝑞 ) = ( 𝑞 𝐻 𝑝 ) ) |
| 33 |
31 32
|
ja |
⊢ ( ( 𝑝 ≠ 𝑞 → ( ( 𝑝 𝐻 𝑞 ) = ∅ ∧ ( 𝑞 𝐻 𝑝 ) = ∅ ) ) → ( 𝑝 𝐻 𝑞 ) = ( 𝑞 𝐻 𝑝 ) ) |
| 34 |
26 33
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ( 𝑝 𝐻 𝑞 ) = ( 𝑞 𝐻 𝑝 ) ) |
| 35 |
|
eqid |
⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) |
| 36 |
35 2 3 14 13
|
homfval |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ( 𝑝 ( Homf ‘ 𝐶 ) 𝑞 ) = ( 𝑝 𝐻 𝑞 ) ) |
| 37 |
35 2 3 13 14
|
homfval |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ( 𝑞 ( Homf ‘ 𝐶 ) 𝑝 ) = ( 𝑞 𝐻 𝑝 ) ) |
| 38 |
34 36 37
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ( 𝑝 ( Homf ‘ 𝐶 ) 𝑞 ) = ( 𝑞 ( Homf ‘ 𝐶 ) 𝑝 ) ) |
| 39 |
38
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝐵 ∀ 𝑞 ∈ 𝐵 ( 𝑝 ( Homf ‘ 𝐶 ) 𝑞 ) = ( 𝑞 ( Homf ‘ 𝐶 ) 𝑝 ) ) |
| 40 |
35 2
|
homffn |
⊢ ( Homf ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) |
| 41 |
|
tpossym |
⊢ ( ( Homf ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) → ( tpos ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) ↔ ∀ 𝑝 ∈ 𝐵 ∀ 𝑞 ∈ 𝐵 ( 𝑝 ( Homf ‘ 𝐶 ) 𝑞 ) = ( 𝑞 ( Homf ‘ 𝐶 ) 𝑝 ) ) ) |
| 42 |
40 41
|
ax-mp |
⊢ ( tpos ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) ↔ ∀ 𝑝 ∈ 𝐵 ∀ 𝑞 ∈ 𝐵 ( 𝑝 ( Homf ‘ 𝐶 ) 𝑞 ) = ( 𝑞 ( Homf ‘ 𝐶 ) 𝑝 ) ) |
| 43 |
39 42
|
sylibr |
⊢ ( 𝜑 → tpos ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) ) |
| 44 |
1 35
|
oppchomf |
⊢ tpos ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝑂 ) |
| 45 |
43 44
|
eqtr3di |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝑂 ) ) |