| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rspc2gv.1 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑊 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑉 → ∀ 𝑦 ∈ 𝑊 𝜑 ) ) |
| 3 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝑊 𝜑 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑊 → 𝜑 ) ) |
| 4 |
3
|
imbi2i |
⊢ ( ( 𝑥 ∈ 𝑉 → ∀ 𝑦 ∈ 𝑊 𝜑 ) ↔ ( 𝑥 ∈ 𝑉 → ∀ 𝑦 ( 𝑦 ∈ 𝑊 → 𝜑 ) ) ) |
| 5 |
4
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑉 → ∀ 𝑦 ∈ 𝑊 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑉 → ∀ 𝑦 ( 𝑦 ∈ 𝑊 → 𝜑 ) ) ) |
| 6 |
|
19.21v |
⊢ ( ∀ 𝑦 ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑊 → 𝜑 ) ) ↔ ( 𝑥 ∈ 𝑉 → ∀ 𝑦 ( 𝑦 ∈ 𝑊 → 𝜑 ) ) ) |
| 7 |
6
|
bicomi |
⊢ ( ( 𝑥 ∈ 𝑉 → ∀ 𝑦 ( 𝑦 ∈ 𝑊 → 𝜑 ) ) ↔ ∀ 𝑦 ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑊 → 𝜑 ) ) ) |
| 8 |
7
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑉 → ∀ 𝑦 ( 𝑦 ∈ 𝑊 → 𝜑 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑊 → 𝜑 ) ) ) |
| 9 |
|
impexp |
⊢ ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑊 ) → 𝜑 ) ↔ ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑊 → 𝜑 ) ) ) |
| 10 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝑉 ↔ 𝐴 ∈ 𝑉 ) ) |
| 11 |
|
eleq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝑊 ↔ 𝐵 ∈ 𝑊 ) ) |
| 12 |
10 11
|
bi2anan9 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑊 ) ↔ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) ) |
| 13 |
12 1
|
imbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑊 ) → 𝜑 ) ↔ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝜓 ) ) ) |
| 14 |
9 13
|
bitr3id |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑊 → 𝜑 ) ) ↔ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝜓 ) ) ) |
| 15 |
14
|
spc2gv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑊 → 𝜑 ) ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝜓 ) ) ) |
| 16 |
15
|
pm2.43a |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 ∈ 𝑉 → ( 𝑦 ∈ 𝑊 → 𝜑 ) ) → 𝜓 ) ) |
| 17 |
8 16
|
biimtrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝑉 → ∀ 𝑦 ( 𝑦 ∈ 𝑊 → 𝜑 ) ) → 𝜓 ) ) |
| 18 |
5 17
|
biimtrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝑉 → ∀ 𝑦 ∈ 𝑊 𝜑 ) → 𝜓 ) ) |
| 19 |
2 18
|
biimtrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑊 𝜑 → 𝜓 ) ) |