Metamath Proof Explorer


Theorem oppcendc

Description: The opposite category of a category whose morphisms are all endomorphisms has the same base and hom-sets as the original category. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypotheses oppcendc.o O = oppCat C
oppcendc.b B = Base C
oppcendc.h H = Hom C
oppcendc.1 φ x B y B x y x H y =
Assertion oppcendc φ Hom 𝑓 C = Hom 𝑓 O

Proof

Step Hyp Ref Expression
1 oppcendc.o O = oppCat C
2 oppcendc.b B = Base C
3 oppcendc.h H = Hom C
4 oppcendc.1 φ x B y B x y x H y =
5 4 ralrimivva φ x B y B x y x H y =
6 eqeq12 x = p y = q x = y p = q
7 6 necon3bid x = p y = q x y p q
8 oveq12 x = p y = q x H y = p H q
9 8 eqeq1d x = p y = q x H y = p H q =
10 7 9 imbi12d x = p y = q x y x H y = p q p H q =
11 10 rspc2gv p B q B x B y B x y x H y = p q p H q =
12 5 11 mpan9 φ p B q B p q p H q =
13 simprr φ p B q B q B
14 simprl φ p B q B p B
15 5 adantr φ p B q B x B y B x y x H y =
16 eqeq12 x = q y = p x = y q = p
17 equcom p = q q = p
18 16 17 bitr4di x = q y = p x = y p = q
19 18 necon3bid x = q y = p x y p q
20 oveq12 x = q y = p x H y = q H p
21 20 eqeq1d x = q y = p x H y = q H p =
22 19 21 imbi12d x = q y = p x y x H y = p q q H p =
23 22 rspc2gv q B p B x B y B x y x H y = p q q H p =
24 23 imp q B p B x B y B x y x H y = p q q H p =
25 13 14 15 24 syl21anc φ p B q B p q q H p =
26 12 25 jcad φ p B q B p q p H q = q H p =
27 nne ¬ p q p = q
28 id p = q p = q
29 equcomi p = q q = p
30 28 29 oveq12d p = q p H q = q H p
31 27 30 sylbi ¬ p q p H q = q H p
32 eqtr3 p H q = q H p = p H q = q H p
33 31 32 ja p q p H q = q H p = p H q = q H p
34 26 33 syl φ p B q B p H q = q H p
35 eqid Hom 𝑓 C = Hom 𝑓 C
36 35 2 3 14 13 homfval φ p B q B p Hom 𝑓 C q = p H q
37 35 2 3 13 14 homfval φ p B q B q Hom 𝑓 C p = q H p
38 34 36 37 3eqtr4d φ p B q B p Hom 𝑓 C q = q Hom 𝑓 C p
39 38 ralrimivva φ p B q B p Hom 𝑓 C q = q Hom 𝑓 C p
40 35 2 homffn Hom 𝑓 C Fn B × B
41 tpossym Hom 𝑓 C Fn B × B tpos Hom 𝑓 C = Hom 𝑓 C p B q B p Hom 𝑓 C q = q Hom 𝑓 C p
42 40 41 ax-mp tpos Hom 𝑓 C = Hom 𝑓 C p B q B p Hom 𝑓 C q = q Hom 𝑓 C p
43 39 42 sylibr φ tpos Hom 𝑓 C = Hom 𝑓 C
44 1 35 oppchomf tpos Hom 𝑓 C = Hom 𝑓 O
45 43 44 eqtr3di φ Hom 𝑓 C = Hom 𝑓 O