Description: The opposite category of a category whose base set is a singleton or an empty set has the same base and hom-sets as the original category. (Contributed by Zhi Wang, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcendc.o | ||
| oppcendc.b | |||
| oppcmndc.x | |||
| Assertion | oppcmndc |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcendc.o | ||
| 2 | oppcendc.b | ||
| 3 | oppcmndc.x | ||
| 4 | eqid | ||
| 5 | 3 | oppcmndclem | |
| 6 | 1 2 4 5 | oppcendc |