| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppcendc.o |
|- O = ( oppCat ` C ) |
| 2 |
|
oppcendc.b |
|- B = ( Base ` C ) |
| 3 |
|
oppcendc.h |
|- H = ( Hom ` C ) |
| 4 |
|
oppcendc.1 |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x =/= y -> ( x H y ) = (/) ) ) |
| 5 |
4
|
ralrimivva |
|- ( ph -> A. x e. B A. y e. B ( x =/= y -> ( x H y ) = (/) ) ) |
| 6 |
|
eqeq12 |
|- ( ( x = p /\ y = q ) -> ( x = y <-> p = q ) ) |
| 7 |
6
|
necon3bid |
|- ( ( x = p /\ y = q ) -> ( x =/= y <-> p =/= q ) ) |
| 8 |
|
oveq12 |
|- ( ( x = p /\ y = q ) -> ( x H y ) = ( p H q ) ) |
| 9 |
8
|
eqeq1d |
|- ( ( x = p /\ y = q ) -> ( ( x H y ) = (/) <-> ( p H q ) = (/) ) ) |
| 10 |
7 9
|
imbi12d |
|- ( ( x = p /\ y = q ) -> ( ( x =/= y -> ( x H y ) = (/) ) <-> ( p =/= q -> ( p H q ) = (/) ) ) ) |
| 11 |
10
|
rspc2gv |
|- ( ( p e. B /\ q e. B ) -> ( A. x e. B A. y e. B ( x =/= y -> ( x H y ) = (/) ) -> ( p =/= q -> ( p H q ) = (/) ) ) ) |
| 12 |
5 11
|
mpan9 |
|- ( ( ph /\ ( p e. B /\ q e. B ) ) -> ( p =/= q -> ( p H q ) = (/) ) ) |
| 13 |
|
simprr |
|- ( ( ph /\ ( p e. B /\ q e. B ) ) -> q e. B ) |
| 14 |
|
simprl |
|- ( ( ph /\ ( p e. B /\ q e. B ) ) -> p e. B ) |
| 15 |
5
|
adantr |
|- ( ( ph /\ ( p e. B /\ q e. B ) ) -> A. x e. B A. y e. B ( x =/= y -> ( x H y ) = (/) ) ) |
| 16 |
|
eqeq12 |
|- ( ( x = q /\ y = p ) -> ( x = y <-> q = p ) ) |
| 17 |
|
equcom |
|- ( p = q <-> q = p ) |
| 18 |
16 17
|
bitr4di |
|- ( ( x = q /\ y = p ) -> ( x = y <-> p = q ) ) |
| 19 |
18
|
necon3bid |
|- ( ( x = q /\ y = p ) -> ( x =/= y <-> p =/= q ) ) |
| 20 |
|
oveq12 |
|- ( ( x = q /\ y = p ) -> ( x H y ) = ( q H p ) ) |
| 21 |
20
|
eqeq1d |
|- ( ( x = q /\ y = p ) -> ( ( x H y ) = (/) <-> ( q H p ) = (/) ) ) |
| 22 |
19 21
|
imbi12d |
|- ( ( x = q /\ y = p ) -> ( ( x =/= y -> ( x H y ) = (/) ) <-> ( p =/= q -> ( q H p ) = (/) ) ) ) |
| 23 |
22
|
rspc2gv |
|- ( ( q e. B /\ p e. B ) -> ( A. x e. B A. y e. B ( x =/= y -> ( x H y ) = (/) ) -> ( p =/= q -> ( q H p ) = (/) ) ) ) |
| 24 |
23
|
imp |
|- ( ( ( q e. B /\ p e. B ) /\ A. x e. B A. y e. B ( x =/= y -> ( x H y ) = (/) ) ) -> ( p =/= q -> ( q H p ) = (/) ) ) |
| 25 |
13 14 15 24
|
syl21anc |
|- ( ( ph /\ ( p e. B /\ q e. B ) ) -> ( p =/= q -> ( q H p ) = (/) ) ) |
| 26 |
12 25
|
jcad |
|- ( ( ph /\ ( p e. B /\ q e. B ) ) -> ( p =/= q -> ( ( p H q ) = (/) /\ ( q H p ) = (/) ) ) ) |
| 27 |
|
nne |
|- ( -. p =/= q <-> p = q ) |
| 28 |
|
id |
|- ( p = q -> p = q ) |
| 29 |
|
equcomi |
|- ( p = q -> q = p ) |
| 30 |
28 29
|
oveq12d |
|- ( p = q -> ( p H q ) = ( q H p ) ) |
| 31 |
27 30
|
sylbi |
|- ( -. p =/= q -> ( p H q ) = ( q H p ) ) |
| 32 |
|
eqtr3 |
|- ( ( ( p H q ) = (/) /\ ( q H p ) = (/) ) -> ( p H q ) = ( q H p ) ) |
| 33 |
31 32
|
ja |
|- ( ( p =/= q -> ( ( p H q ) = (/) /\ ( q H p ) = (/) ) ) -> ( p H q ) = ( q H p ) ) |
| 34 |
26 33
|
syl |
|- ( ( ph /\ ( p e. B /\ q e. B ) ) -> ( p H q ) = ( q H p ) ) |
| 35 |
|
eqid |
|- ( Homf ` C ) = ( Homf ` C ) |
| 36 |
35 2 3 14 13
|
homfval |
|- ( ( ph /\ ( p e. B /\ q e. B ) ) -> ( p ( Homf ` C ) q ) = ( p H q ) ) |
| 37 |
35 2 3 13 14
|
homfval |
|- ( ( ph /\ ( p e. B /\ q e. B ) ) -> ( q ( Homf ` C ) p ) = ( q H p ) ) |
| 38 |
34 36 37
|
3eqtr4d |
|- ( ( ph /\ ( p e. B /\ q e. B ) ) -> ( p ( Homf ` C ) q ) = ( q ( Homf ` C ) p ) ) |
| 39 |
38
|
ralrimivva |
|- ( ph -> A. p e. B A. q e. B ( p ( Homf ` C ) q ) = ( q ( Homf ` C ) p ) ) |
| 40 |
35 2
|
homffn |
|- ( Homf ` C ) Fn ( B X. B ) |
| 41 |
|
tpossym |
|- ( ( Homf ` C ) Fn ( B X. B ) -> ( tpos ( Homf ` C ) = ( Homf ` C ) <-> A. p e. B A. q e. B ( p ( Homf ` C ) q ) = ( q ( Homf ` C ) p ) ) ) |
| 42 |
40 41
|
ax-mp |
|- ( tpos ( Homf ` C ) = ( Homf ` C ) <-> A. p e. B A. q e. B ( p ( Homf ` C ) q ) = ( q ( Homf ` C ) p ) ) |
| 43 |
39 42
|
sylibr |
|- ( ph -> tpos ( Homf ` C ) = ( Homf ` C ) ) |
| 44 |
1 35
|
oppchomf |
|- tpos ( Homf ` C ) = ( Homf ` O ) |
| 45 |
43 44
|
eqtr3di |
|- ( ph -> ( Homf ` C ) = ( Homf ` O ) ) |