Metamath Proof Explorer


Theorem termcpropd

Description: Two structures with the same base, hom-sets and composition operation are either both terminal categories or neither. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypotheses termcpropd.1
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) )
termcpropd.2
|- ( ph -> ( comf ` C ) = ( comf ` D ) )
termcpropd.3
|- ( ph -> C e. V )
termcpropd.4
|- ( ph -> D e. W )
Assertion termcpropd
|- ( ph -> ( C e. TermCat <-> D e. TermCat ) )

Proof

Step Hyp Ref Expression
1 termcpropd.1
 |-  ( ph -> ( Homf ` C ) = ( Homf ` D ) )
2 termcpropd.2
 |-  ( ph -> ( comf ` C ) = ( comf ` D ) )
3 termcpropd.3
 |-  ( ph -> C e. V )
4 termcpropd.4
 |-  ( ph -> D e. W )
5 1 2 3 4 thincpropd
 |-  ( ph -> ( C e. ThinCat <-> D e. ThinCat ) )
6 1 homfeqbas
 |-  ( ph -> ( Base ` C ) = ( Base ` D ) )
7 6 eqeq1d
 |-  ( ph -> ( ( Base ` C ) = { x } <-> ( Base ` D ) = { x } ) )
8 7 exbidv
 |-  ( ph -> ( E. x ( Base ` C ) = { x } <-> E. x ( Base ` D ) = { x } ) )
9 5 8 anbi12d
 |-  ( ph -> ( ( C e. ThinCat /\ E. x ( Base ` C ) = { x } ) <-> ( D e. ThinCat /\ E. x ( Base ` D ) = { x } ) ) )
10 eqid
 |-  ( Base ` C ) = ( Base ` C )
11 10 istermc
 |-  ( C e. TermCat <-> ( C e. ThinCat /\ E. x ( Base ` C ) = { x } ) )
12 eqid
 |-  ( Base ` D ) = ( Base ` D )
13 12 istermc
 |-  ( D e. TermCat <-> ( D e. ThinCat /\ E. x ( Base ` D ) = { x } ) )
14 9 11 13 3bitr4g
 |-  ( ph -> ( C e. TermCat <-> D e. TermCat ) )