| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termcpropd.1 |
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
| 2 |
|
termcpropd.2 |
|- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
| 3 |
|
termcpropd.3 |
|- ( ph -> C e. V ) |
| 4 |
|
termcpropd.4 |
|- ( ph -> D e. W ) |
| 5 |
1 2 3 4
|
thincpropd |
|- ( ph -> ( C e. ThinCat <-> D e. ThinCat ) ) |
| 6 |
1
|
homfeqbas |
|- ( ph -> ( Base ` C ) = ( Base ` D ) ) |
| 7 |
6
|
eqeq1d |
|- ( ph -> ( ( Base ` C ) = { x } <-> ( Base ` D ) = { x } ) ) |
| 8 |
7
|
exbidv |
|- ( ph -> ( E. x ( Base ` C ) = { x } <-> E. x ( Base ` D ) = { x } ) ) |
| 9 |
5 8
|
anbi12d |
|- ( ph -> ( ( C e. ThinCat /\ E. x ( Base ` C ) = { x } ) <-> ( D e. ThinCat /\ E. x ( Base ` D ) = { x } ) ) ) |
| 10 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 11 |
10
|
istermc |
|- ( C e. TermCat <-> ( C e. ThinCat /\ E. x ( Base ` C ) = { x } ) ) |
| 12 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 13 |
12
|
istermc |
|- ( D e. TermCat <-> ( D e. ThinCat /\ E. x ( Base ` D ) = { x } ) ) |
| 14 |
9 11 13
|
3bitr4g |
|- ( ph -> ( C e. TermCat <-> D e. TermCat ) ) |