Metamath Proof Explorer


Theorem termcpropd

Description: Two structures with the same base, hom-sets and composition operation are either both terminal categories or neither. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypotheses termcpropd.1 φ Hom 𝑓 C = Hom 𝑓 D
termcpropd.2 φ comp 𝑓 C = comp 𝑓 D
termcpropd.3 φ C V
termcpropd.4 φ D W
Assertion termcpropd Could not format assertion : No typesetting found for |- ( ph -> ( C e. TermCat <-> D e. TermCat ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 termcpropd.1 φ Hom 𝑓 C = Hom 𝑓 D
2 termcpropd.2 φ comp 𝑓 C = comp 𝑓 D
3 termcpropd.3 φ C V
4 termcpropd.4 φ D W
5 1 2 3 4 thincpropd φ C ThinCat D ThinCat
6 1 homfeqbas φ Base C = Base D
7 6 eqeq1d φ Base C = x Base D = x
8 7 exbidv φ x Base C = x x Base D = x
9 5 8 anbi12d φ C ThinCat x Base C = x D ThinCat x Base D = x
10 eqid Base C = Base C
11 10 istermc Could not format ( C e. TermCat <-> ( C e. ThinCat /\ E. x ( Base ` C ) = { x } ) ) : No typesetting found for |- ( C e. TermCat <-> ( C e. ThinCat /\ E. x ( Base ` C ) = { x } ) ) with typecode |-
12 eqid Base D = Base D
13 12 istermc Could not format ( D e. TermCat <-> ( D e. ThinCat /\ E. x ( Base ` D ) = { x } ) ) : No typesetting found for |- ( D e. TermCat <-> ( D e. ThinCat /\ E. x ( Base ` D ) = { x } ) ) with typecode |-
14 9 11 13 3bitr4g Could not format ( ph -> ( C e. TermCat <-> D e. TermCat ) ) : No typesetting found for |- ( ph -> ( C e. TermCat <-> D e. TermCat ) ) with typecode |-