Metamath Proof Explorer


Theorem thincpropd

Description: Two structures with the same base, hom-sets and composition operation are either both thin categories or neither. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypotheses thincpropd.1 φ Hom 𝑓 C = Hom 𝑓 D
thincpropd.2 φ comp 𝑓 C = comp 𝑓 D
thincpropd.3 φ C V
thincpropd.4 φ D W
Assertion thincpropd φ C ThinCat D ThinCat

Proof

Step Hyp Ref Expression
1 thincpropd.1 φ Hom 𝑓 C = Hom 𝑓 D
2 thincpropd.2 φ comp 𝑓 C = comp 𝑓 D
3 thincpropd.3 φ C V
4 thincpropd.4 φ D W
5 1 2 3 4 catpropd φ C Cat D Cat
6 eqid Base C = Base C
7 eqid Hom C = Hom C
8 eqid Hom D = Hom D
9 1 adantr φ x Base C y Base C Hom 𝑓 C = Hom 𝑓 D
10 simprl φ x Base C y Base C x Base C
11 simprr φ x Base C y Base C y Base C
12 6 7 8 9 10 11 homfeqval φ x Base C y Base C x Hom C y = x Hom D y
13 12 eleq2d φ x Base C y Base C f x Hom C y f x Hom D y
14 13 mobidv φ x Base C y Base C * f f x Hom C y * f f x Hom D y
15 14 2ralbidva φ x Base C y Base C * f f x Hom C y x Base C y Base C * f f x Hom D y
16 1 homfeqbas φ Base C = Base D
17 16 raleqdv φ y Base C * f f x Hom D y y Base D * f f x Hom D y
18 16 17 raleqbidv φ x Base C y Base C * f f x Hom D y x Base D y Base D * f f x Hom D y
19 15 18 bitrd φ x Base C y Base C * f f x Hom C y x Base D y Base D * f f x Hom D y
20 5 19 anbi12d φ C Cat x Base C y Base C * f f x Hom C y D Cat x Base D y Base D * f f x Hom D y
21 6 7 isthinc C ThinCat C Cat x Base C y Base C * f f x Hom C y
22 eqid Base D = Base D
23 22 8 isthinc D ThinCat D Cat x Base D y Base D * f f x Hom D y
24 20 21 23 3bitr4g φ C ThinCat D ThinCat