| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dftermo2 |
|- TermO = ( c e. Cat |-> ( InitO ` ( oppCat ` c ) ) ) |
| 2 |
|
eqid |
|- ( oppCat ` c ) = ( oppCat ` c ) |
| 3 |
2
|
oppccat |
|- ( c e. Cat -> ( oppCat ` c ) e. Cat ) |
| 4 |
|
ovex |
|- ( f ( o UP d ) (/) ) e. _V |
| 5 |
4
|
dmex |
|- dom ( f ( o UP d ) (/) ) e. _V |
| 6 |
5
|
csbex |
|- [_ ( ( 1st ` ( d DiagFunc o ) ) ` (/) ) / f ]_ dom ( f ( o UP d ) (/) ) e. _V |
| 7 |
6
|
csbex |
|- [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc o ) ) ` (/) ) / f ]_ dom ( f ( o UP d ) (/) ) e. _V |
| 8 |
7
|
csbex |
|- [_ ( oppCat ` c ) / o ]_ [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc o ) ) ` (/) ) / f ]_ dom ( f ( o UP d ) (/) ) e. _V |
| 9 |
|
dfinito4 |
|- InitO = ( o e. Cat |-> [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc o ) ) ` (/) ) / f ]_ dom ( f ( o UP d ) (/) ) ) |
| 10 |
9
|
fvmpts |
|- ( ( ( oppCat ` c ) e. Cat /\ [_ ( oppCat ` c ) / o ]_ [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc o ) ) ` (/) ) / f ]_ dom ( f ( o UP d ) (/) ) e. _V ) -> ( InitO ` ( oppCat ` c ) ) = [_ ( oppCat ` c ) / o ]_ [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc o ) ) ` (/) ) / f ]_ dom ( f ( o UP d ) (/) ) ) |
| 11 |
3 8 10
|
sylancl |
|- ( c e. Cat -> ( InitO ` ( oppCat ` c ) ) = [_ ( oppCat ` c ) / o ]_ [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc o ) ) ` (/) ) / f ]_ dom ( f ( o UP d ) (/) ) ) |
| 12 |
11
|
mpteq2ia |
|- ( c e. Cat |-> ( InitO ` ( oppCat ` c ) ) ) = ( c e. Cat |-> [_ ( oppCat ` c ) / o ]_ [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc o ) ) ` (/) ) / f ]_ dom ( f ( o UP d ) (/) ) ) |
| 13 |
1 12
|
eqtri |
|- TermO = ( c e. Cat |-> [_ ( oppCat ` c ) / o ]_ [_ ( SetCat ` 1o ) / d ]_ [_ ( ( 1st ` ( d DiagFunc o ) ) ` (/) ) / f ]_ dom ( f ( o UP d ) (/) ) ) |