Metamath Proof Explorer


Theorem isinito2

Description: The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 23-Oct-2025)

Ref Expression
Hypotheses isinito2.1 1 ˙ = SetCat 1 𝑜
isinito2.f F = 1 st 1 ˙ Δ func C
Assertion isinito2 Could not format assertion : No typesetting found for |- ( I e. ( InitO ` C ) <-> I ( F ( C UP .1. ) (/) ) (/) ) with typecode |-

Proof

Step Hyp Ref Expression
1 isinito2.1 1 ˙ = SetCat 1 𝑜
2 isinito2.f F = 1 st 1 ˙ Δ func C
3 initorcl I InitO C C Cat
4 eqid Base C = Base C
5 4 initoo2 I InitO C I Base C
6 1 2 3 5 isinito2lem Could not format ( I e. ( InitO ` C ) -> ( I e. ( InitO ` C ) <-> I ( F ( C UP .1. ) (/) ) (/) ) ) : No typesetting found for |- ( I e. ( InitO ` C ) -> ( I e. ( InitO ` C ) <-> I ( F ( C UP .1. ) (/) ) (/) ) ) with typecode |-
7 6 ibi Could not format ( I e. ( InitO ` C ) -> I ( F ( C UP .1. ) (/) ) (/) ) : No typesetting found for |- ( I e. ( InitO ` C ) -> I ( F ( C UP .1. ) (/) ) (/) ) with typecode |-
8 id Could not format ( I ( F ( C UP .1. ) (/) ) (/) -> I ( F ( C UP .1. ) (/) ) (/) ) : No typesetting found for |- ( I ( F ( C UP .1. ) (/) ) (/) -> I ( F ( C UP .1. ) (/) ) (/) ) with typecode |-
9 8 up1st2nd Could not format ( I ( F ( C UP .1. ) (/) ) (/) -> I ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( C UP .1. ) (/) ) (/) ) : No typesetting found for |- ( I ( F ( C UP .1. ) (/) ) (/) -> I ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( C UP .1. ) (/) ) (/) ) with typecode |-
10 9 uprcl2 Could not format ( I ( F ( C UP .1. ) (/) ) (/) -> ( 1st ` F ) ( C Func .1. ) ( 2nd ` F ) ) : No typesetting found for |- ( I ( F ( C UP .1. ) (/) ) (/) -> ( 1st ` F ) ( C Func .1. ) ( 2nd ` F ) ) with typecode |-
11 10 funcrcl2 Could not format ( I ( F ( C UP .1. ) (/) ) (/) -> C e. Cat ) : No typesetting found for |- ( I ( F ( C UP .1. ) (/) ) (/) -> C e. Cat ) with typecode |-
12 9 4 uprcl4 Could not format ( I ( F ( C UP .1. ) (/) ) (/) -> I e. ( Base ` C ) ) : No typesetting found for |- ( I ( F ( C UP .1. ) (/) ) (/) -> I e. ( Base ` C ) ) with typecode |-
13 1 2 11 12 isinito2lem Could not format ( I ( F ( C UP .1. ) (/) ) (/) -> ( I e. ( InitO ` C ) <-> I ( F ( C UP .1. ) (/) ) (/) ) ) : No typesetting found for |- ( I ( F ( C UP .1. ) (/) ) (/) -> ( I e. ( InitO ` C ) <-> I ( F ( C UP .1. ) (/) ) (/) ) ) with typecode |-
14 13 ibir Could not format ( I ( F ( C UP .1. ) (/) ) (/) -> I e. ( InitO ` C ) ) : No typesetting found for |- ( I ( F ( C UP .1. ) (/) ) (/) -> I e. ( InitO ` C ) ) with typecode |-
15 7 14 impbii Could not format ( I e. ( InitO ` C ) <-> I ( F ( C UP .1. ) (/) ) (/) ) : No typesetting found for |- ( I e. ( InitO ` C ) <-> I ( F ( C UP .1. ) (/) ) (/) ) with typecode |-