Metamath Proof Explorer
Description: The identity morphism of the trivial category. (Contributed by Zhi
Wang, 22-Oct-2025)
|
|
Ref |
Expression |
|
Hypotheses |
funcsetc1o.1 |
⊢ 1 = ( SetCat ‘ 1o ) |
|
|
setc1oid.i |
⊢ 𝐼 = ( Id ‘ 1 ) |
|
Assertion |
setc1oid |
⊢ ( 𝐼 ‘ ∅ ) = ∅ |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcsetc1o.1 |
⊢ 1 = ( SetCat ‘ 1o ) |
| 2 |
|
setc1oid.i |
⊢ 𝐼 = ( Id ‘ 1 ) |
| 3 |
|
1oex |
⊢ 1o ∈ V |
| 4 |
3
|
a1i |
⊢ ( ⊤ → 1o ∈ V ) |
| 5 |
|
0lt1o |
⊢ ∅ ∈ 1o |
| 6 |
5
|
a1i |
⊢ ( ⊤ → ∅ ∈ 1o ) |
| 7 |
1 2 4 6
|
setcid |
⊢ ( ⊤ → ( 𝐼 ‘ ∅ ) = ( I ↾ ∅ ) ) |
| 8 |
7
|
mptru |
⊢ ( 𝐼 ‘ ∅ ) = ( I ↾ ∅ ) |
| 9 |
|
res0 |
⊢ ( I ↾ ∅ ) = ∅ |
| 10 |
8 9
|
eqtri |
⊢ ( 𝐼 ‘ ∅ ) = ∅ |