Metamath Proof Explorer


Theorem setc1oid

Description: The identity morphism of the trivial category. (Contributed by Zhi Wang, 22-Oct-2025)

Ref Expression
Hypotheses funcsetc1o.1 1 ˙ = SetCat 1 𝑜
setc1oid.i I = Id 1 ˙
Assertion setc1oid I =

Proof

Step Hyp Ref Expression
1 funcsetc1o.1 1 ˙ = SetCat 1 𝑜
2 setc1oid.i I = Id 1 ˙
3 1oex 1 𝑜 V
4 3 a1i 1 𝑜 V
5 0lt1o 1 𝑜
6 5 a1i 1 𝑜
7 1 2 4 6 setcid I = I
8 7 mptru I = I
9 res0 I =
10 8 9 eqtri I =