Metamath Proof Explorer


Theorem funcsetc1ocl

Description: The functor to the trivial category. The converse is also true due to reverse closure. (Contributed by Zhi Wang, 22-Oct-2025)

Ref Expression
Hypotheses funcsetc1o.1 1 ˙ = SetCat 1 𝑜
funcsetc1o.f F = 1 st 1 ˙ Δ func C
funcsetc1o.c φ C Cat
Assertion funcsetc1ocl φ F C Func 1 ˙

Proof

Step Hyp Ref Expression
1 funcsetc1o.1 1 ˙ = SetCat 1 𝑜
2 funcsetc1o.f F = 1 st 1 ˙ Δ func C
3 funcsetc1o.c φ C Cat
4 eqid 1 ˙ Δ func C = 1 ˙ Δ func C
5 setc1oterm Could not format ( SetCat ` 1o ) e. TermCat : No typesetting found for |- ( SetCat ` 1o ) e. TermCat with typecode |-
6 1 5 eqeltri Could not format .1. e. TermCat : No typesetting found for |- .1. e. TermCat with typecode |-
7 6 a1i Could not format ( ph -> .1. e. TermCat ) : No typesetting found for |- ( ph -> .1. e. TermCat ) with typecode |-
8 7 termccd φ 1 ˙ Cat
9 1 setc1obas 1 𝑜 = Base 1 ˙
10 0lt1o 1 𝑜
11 10 a1i φ 1 𝑜
12 4 8 3 9 11 2 diag1cl φ F C Func 1 ˙