| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uobeqterm.a |
⊢ 𝐴 = ( Base ‘ 𝐷 ) |
| 2 |
|
uobeqterm.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
| 3 |
|
uobeqterm.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 4 |
|
uobeqterm.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 5 |
|
uobeqterm.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 6 |
|
uobeqterm.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐶 Func 𝐸 ) ) |
| 7 |
|
uobeqterm.d |
⊢ ( 𝜑 → 𝐷 ∈ TermCat ) |
| 8 |
|
uobeqterm.e |
⊢ ( 𝜑 → 𝐸 ∈ TermCat ) |
| 9 |
|
eqid |
⊢ ( CatCat ‘ { 𝐷 , 𝐸 } ) = ( CatCat ‘ { 𝐷 , 𝐸 } ) |
| 10 |
|
eqid |
⊢ ( Base ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) = ( Base ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) |
| 11 |
|
prid1g |
⊢ ( 𝐷 ∈ TermCat → 𝐷 ∈ { 𝐷 , 𝐸 } ) |
| 12 |
7 11
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ { 𝐷 , 𝐸 } ) |
| 13 |
7
|
termccd |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 14 |
12 13
|
elind |
⊢ ( 𝜑 → 𝐷 ∈ ( { 𝐷 , 𝐸 } ∩ Cat ) ) |
| 15 |
|
prex |
⊢ { 𝐷 , 𝐸 } ∈ V |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → { 𝐷 , 𝐸 } ∈ V ) |
| 17 |
9 10 16
|
catcbas |
⊢ ( 𝜑 → ( Base ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) = ( { 𝐷 , 𝐸 } ∩ Cat ) ) |
| 18 |
14 17
|
eleqtrrd |
⊢ ( 𝜑 → 𝐷 ∈ ( Base ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) ) |
| 19 |
|
prid2g |
⊢ ( 𝐸 ∈ TermCat → 𝐸 ∈ { 𝐷 , 𝐸 } ) |
| 20 |
8 19
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ { 𝐷 , 𝐸 } ) |
| 21 |
8
|
termccd |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 22 |
20 21
|
elind |
⊢ ( 𝜑 → 𝐸 ∈ ( { 𝐷 , 𝐸 } ∩ Cat ) ) |
| 23 |
22 17
|
eleqtrrd |
⊢ ( 𝜑 → 𝐸 ∈ ( Base ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) ) |
| 24 |
9 10 18 23 7
|
termcciso |
⊢ ( 𝜑 → ( 𝐸 ∈ TermCat ↔ 𝐷 ( ≃𝑐 ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) |
| 25 |
8 24
|
mpbid |
⊢ ( 𝜑 → 𝐷 ( ≃𝑐 ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) |
| 26 |
|
eqid |
⊢ ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) = ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) |
| 27 |
9
|
catccat |
⊢ ( { 𝐷 , 𝐸 } ∈ V → ( CatCat ‘ { 𝐷 , 𝐸 } ) ∈ Cat ) |
| 28 |
16 27
|
syl |
⊢ ( 𝜑 → ( CatCat ‘ { 𝐷 , 𝐸 } ) ∈ Cat ) |
| 29 |
26 10 28 18 23
|
cic |
⊢ ( 𝜑 → ( 𝐷 ( ≃𝑐 ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ↔ ∃ 𝑘 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) ) |
| 30 |
25 29
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑘 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) |
| 31 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → 𝑋 ∈ 𝐴 ) |
| 32 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 33 |
|
fullfunc |
⊢ ( 𝐷 Full 𝐸 ) ⊆ ( 𝐷 Func 𝐸 ) |
| 34 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) |
| 35 |
9 1 2 26 34
|
catcisoi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → ( 𝑘 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ∧ ( 1st ‘ 𝑘 ) : 𝐴 –1-1-onto→ 𝐵 ) ) |
| 36 |
35
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → 𝑘 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ) |
| 37 |
36
|
elin1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → 𝑘 ∈ ( 𝐷 Full 𝐸 ) ) |
| 38 |
33 37
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → 𝑘 ∈ ( 𝐷 Func 𝐸 ) ) |
| 39 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → 𝐺 ∈ ( 𝐶 Func 𝐸 ) ) |
| 40 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → 𝐸 ∈ TermCat ) |
| 41 |
32 38 39 40
|
cofuterm |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → ( 𝑘 ∘func 𝐹 ) = 𝐺 ) |
| 42 |
38
|
func1st2nd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → ( 1st ‘ 𝑘 ) ( 𝐷 Func 𝐸 ) ( 2nd ‘ 𝑘 ) ) |
| 43 |
1 2 42
|
funcf1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → ( 1st ‘ 𝑘 ) : 𝐴 ⟶ 𝐵 ) |
| 44 |
43 31
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → ( ( 1st ‘ 𝑘 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 45 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → 𝑌 ∈ 𝐵 ) |
| 46 |
40 2 44 45
|
termcbasmo |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → ( ( 1st ‘ 𝑘 ) ‘ 𝑋 ) = 𝑌 ) |
| 47 |
1 31 32 41 46 9 26 34
|
uobeq3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ( Iso ‘ ( CatCat ‘ { 𝐷 , 𝐸 } ) ) 𝐸 ) ) → dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) = dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ) |
| 48 |
30 47
|
exlimddv |
⊢ ( 𝜑 → dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) = dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ) |