| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termcciso.c |
⊢ 𝐶 = ( CatCat ‘ 𝑈 ) |
| 2 |
|
termcciso.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
termcciso.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 4 |
|
termcciso.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 5 |
|
termcciso.t |
⊢ ( 𝜑 → 𝑋 ∈ TermCat ) |
| 6 |
1 2
|
elbasfv |
⊢ ( 𝑋 ∈ 𝐵 → 𝑈 ∈ V ) |
| 7 |
3 6
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ V ) |
| 8 |
1
|
catccat |
⊢ ( 𝑈 ∈ V → 𝐶 ∈ Cat ) |
| 9 |
7 8
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ TermCat ) → 𝐶 ∈ Cat ) |
| 11 |
1 2 7
|
catcbas |
⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Cat ) ) |
| 12 |
3 11
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑈 ∩ Cat ) ) |
| 13 |
12
|
elin1d |
⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |
| 14 |
1 7 13 5
|
termcterm |
⊢ ( 𝜑 → 𝑋 ∈ ( TermO ‘ 𝐶 ) ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ TermCat ) → 𝑋 ∈ ( TermO ‘ 𝐶 ) ) |
| 16 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ TermCat ) → 𝑈 ∈ V ) |
| 17 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ TermCat ) → 𝑌 ∈ 𝐵 ) |
| 18 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ TermCat ) → 𝐵 = ( 𝑈 ∩ Cat ) ) |
| 19 |
17 18
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ TermCat ) → 𝑌 ∈ ( 𝑈 ∩ Cat ) ) |
| 20 |
19
|
elin1d |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ TermCat ) → 𝑌 ∈ 𝑈 ) |
| 21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ TermCat ) → 𝑌 ∈ TermCat ) |
| 22 |
1 16 20 21
|
termcterm |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ TermCat ) → 𝑌 ∈ ( TermO ‘ 𝐶 ) ) |
| 23 |
10 15 22
|
termoeu1w |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ TermCat ) → 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) |
| 24 |
13 5
|
elind |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑈 ∩ TermCat ) ) |
| 25 |
24
|
ne0d |
⊢ ( 𝜑 → ( 𝑈 ∩ TermCat ) ≠ ∅ ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) → ( 𝑈 ∩ TermCat ) ≠ ∅ ) |
| 27 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) → 𝐶 ∈ Cat ) |
| 28 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) → 𝑋 ∈ ( TermO ‘ 𝐶 ) ) |
| 29 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) → 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) |
| 30 |
27 28 29
|
termoeu2 |
⊢ ( ( 𝜑 ∧ 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) → 𝑌 ∈ ( TermO ‘ 𝐶 ) ) |
| 31 |
1 26 30
|
termcterm2 |
⊢ ( ( 𝜑 ∧ 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) → 𝑌 ∈ TermCat ) |
| 32 |
23 31
|
impbida |
⊢ ( 𝜑 → ( 𝑌 ∈ TermCat ↔ 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) ) |