Step |
Hyp |
Ref |
Expression |
1 |
|
termoeu1.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
2 |
|
termoeu1.a |
⊢ ( 𝜑 → 𝐴 ∈ ( TermO ‘ 𝐶 ) ) |
3 |
|
termoeu1.b |
⊢ ( 𝜑 → 𝐵 ∈ ( TermO ‘ 𝐶 ) ) |
4 |
1 2 3
|
termoeu1 |
⊢ ( 𝜑 → ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) |
5 |
|
euex |
⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) → ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) |
6 |
4 5
|
syl |
⊢ ( 𝜑 → ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) |
7 |
|
eqid |
⊢ ( Iso ‘ 𝐶 ) = ( Iso ‘ 𝐶 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
9 |
|
termoo |
⊢ ( 𝐶 ∈ Cat → ( 𝐴 ∈ ( TermO ‘ 𝐶 ) → 𝐴 ∈ ( Base ‘ 𝐶 ) ) ) |
10 |
1 2 9
|
sylc |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝐶 ) ) |
11 |
|
termoo |
⊢ ( 𝐶 ∈ Cat → ( 𝐵 ∈ ( TermO ‘ 𝐶 ) → 𝐵 ∈ ( Base ‘ 𝐶 ) ) ) |
12 |
1 3 11
|
sylc |
⊢ ( 𝜑 → 𝐵 ∈ ( Base ‘ 𝐶 ) ) |
13 |
7 8 1 10 12
|
cic |
⊢ ( 𝜑 → ( 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ↔ ∃ 𝑓 𝑓 ∈ ( 𝐴 ( Iso ‘ 𝐶 ) 𝐵 ) ) ) |
14 |
6 13
|
mpbird |
⊢ ( 𝜑 → 𝐴 ( ≃𝑐 ‘ 𝐶 ) 𝐵 ) |