| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termcciso.c |
|- C = ( CatCat ` U ) |
| 2 |
|
termcciso.b |
|- B = ( Base ` C ) |
| 3 |
|
termcciso.x |
|- ( ph -> X e. B ) |
| 4 |
|
termcciso.y |
|- ( ph -> Y e. B ) |
| 5 |
|
termcciso.t |
|- ( ph -> X e. TermCat ) |
| 6 |
1 2
|
elbasfv |
|- ( X e. B -> U e. _V ) |
| 7 |
3 6
|
syl |
|- ( ph -> U e. _V ) |
| 8 |
1
|
catccat |
|- ( U e. _V -> C e. Cat ) |
| 9 |
7 8
|
syl |
|- ( ph -> C e. Cat ) |
| 10 |
9
|
adantr |
|- ( ( ph /\ Y e. TermCat ) -> C e. Cat ) |
| 11 |
1 2 7
|
catcbas |
|- ( ph -> B = ( U i^i Cat ) ) |
| 12 |
3 11
|
eleqtrd |
|- ( ph -> X e. ( U i^i Cat ) ) |
| 13 |
12
|
elin1d |
|- ( ph -> X e. U ) |
| 14 |
1 7 13 5
|
termcterm |
|- ( ph -> X e. ( TermO ` C ) ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ Y e. TermCat ) -> X e. ( TermO ` C ) ) |
| 16 |
7
|
adantr |
|- ( ( ph /\ Y e. TermCat ) -> U e. _V ) |
| 17 |
4
|
adantr |
|- ( ( ph /\ Y e. TermCat ) -> Y e. B ) |
| 18 |
11
|
adantr |
|- ( ( ph /\ Y e. TermCat ) -> B = ( U i^i Cat ) ) |
| 19 |
17 18
|
eleqtrd |
|- ( ( ph /\ Y e. TermCat ) -> Y e. ( U i^i Cat ) ) |
| 20 |
19
|
elin1d |
|- ( ( ph /\ Y e. TermCat ) -> Y e. U ) |
| 21 |
|
simpr |
|- ( ( ph /\ Y e. TermCat ) -> Y e. TermCat ) |
| 22 |
1 16 20 21
|
termcterm |
|- ( ( ph /\ Y e. TermCat ) -> Y e. ( TermO ` C ) ) |
| 23 |
10 15 22
|
termoeu1w |
|- ( ( ph /\ Y e. TermCat ) -> X ( ~=c ` C ) Y ) |
| 24 |
13 5
|
elind |
|- ( ph -> X e. ( U i^i TermCat ) ) |
| 25 |
24
|
ne0d |
|- ( ph -> ( U i^i TermCat ) =/= (/) ) |
| 26 |
25
|
adantr |
|- ( ( ph /\ X ( ~=c ` C ) Y ) -> ( U i^i TermCat ) =/= (/) ) |
| 27 |
9
|
adantr |
|- ( ( ph /\ X ( ~=c ` C ) Y ) -> C e. Cat ) |
| 28 |
14
|
adantr |
|- ( ( ph /\ X ( ~=c ` C ) Y ) -> X e. ( TermO ` C ) ) |
| 29 |
|
simpr |
|- ( ( ph /\ X ( ~=c ` C ) Y ) -> X ( ~=c ` C ) Y ) |
| 30 |
27 28 29
|
termoeu2 |
|- ( ( ph /\ X ( ~=c ` C ) Y ) -> Y e. ( TermO ` C ) ) |
| 31 |
1 26 30
|
termcterm2 |
|- ( ( ph /\ X ( ~=c ` C ) Y ) -> Y e. TermCat ) |
| 32 |
23 31
|
impbida |
|- ( ph -> ( Y e. TermCat <-> X ( ~=c ` C ) Y ) ) |