Metamath Proof Explorer


Theorem termcciso

Description: A category is isomorphic to a terminal category iff it itself is terminal. (Contributed by Zhi Wang, 26-Oct-2025)

Ref Expression
Hypotheses termcciso.c C = CatCat U
termcciso.b B = Base C
termcciso.x φ X B
termcciso.y φ Y B
termcciso.t No typesetting found for |- ( ph -> X e. TermCat ) with typecode |-
Assertion termcciso Could not format assertion : No typesetting found for |- ( ph -> ( Y e. TermCat <-> X ( ~=c ` C ) Y ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 termcciso.c C = CatCat U
2 termcciso.b B = Base C
3 termcciso.x φ X B
4 termcciso.y φ Y B
5 termcciso.t Could not format ( ph -> X e. TermCat ) : No typesetting found for |- ( ph -> X e. TermCat ) with typecode |-
6 1 2 elbasfv X B U V
7 3 6 syl φ U V
8 1 catccat U V C Cat
9 7 8 syl φ C Cat
10 9 adantr Could not format ( ( ph /\ Y e. TermCat ) -> C e. Cat ) : No typesetting found for |- ( ( ph /\ Y e. TermCat ) -> C e. Cat ) with typecode |-
11 1 2 7 catcbas φ B = U Cat
12 3 11 eleqtrd φ X U Cat
13 12 elin1d φ X U
14 1 7 13 5 termcterm φ X TermO C
15 14 adantr Could not format ( ( ph /\ Y e. TermCat ) -> X e. ( TermO ` C ) ) : No typesetting found for |- ( ( ph /\ Y e. TermCat ) -> X e. ( TermO ` C ) ) with typecode |-
16 7 adantr Could not format ( ( ph /\ Y e. TermCat ) -> U e. _V ) : No typesetting found for |- ( ( ph /\ Y e. TermCat ) -> U e. _V ) with typecode |-
17 4 adantr Could not format ( ( ph /\ Y e. TermCat ) -> Y e. B ) : No typesetting found for |- ( ( ph /\ Y e. TermCat ) -> Y e. B ) with typecode |-
18 11 adantr Could not format ( ( ph /\ Y e. TermCat ) -> B = ( U i^i Cat ) ) : No typesetting found for |- ( ( ph /\ Y e. TermCat ) -> B = ( U i^i Cat ) ) with typecode |-
19 17 18 eleqtrd Could not format ( ( ph /\ Y e. TermCat ) -> Y e. ( U i^i Cat ) ) : No typesetting found for |- ( ( ph /\ Y e. TermCat ) -> Y e. ( U i^i Cat ) ) with typecode |-
20 19 elin1d Could not format ( ( ph /\ Y e. TermCat ) -> Y e. U ) : No typesetting found for |- ( ( ph /\ Y e. TermCat ) -> Y e. U ) with typecode |-
21 simpr Could not format ( ( ph /\ Y e. TermCat ) -> Y e. TermCat ) : No typesetting found for |- ( ( ph /\ Y e. TermCat ) -> Y e. TermCat ) with typecode |-
22 1 16 20 21 termcterm Could not format ( ( ph /\ Y e. TermCat ) -> Y e. ( TermO ` C ) ) : No typesetting found for |- ( ( ph /\ Y e. TermCat ) -> Y e. ( TermO ` C ) ) with typecode |-
23 10 15 22 termoeu1w Could not format ( ( ph /\ Y e. TermCat ) -> X ( ~=c ` C ) Y ) : No typesetting found for |- ( ( ph /\ Y e. TermCat ) -> X ( ~=c ` C ) Y ) with typecode |-
24 13 5 elind Could not format ( ph -> X e. ( U i^i TermCat ) ) : No typesetting found for |- ( ph -> X e. ( U i^i TermCat ) ) with typecode |-
25 24 ne0d Could not format ( ph -> ( U i^i TermCat ) =/= (/) ) : No typesetting found for |- ( ph -> ( U i^i TermCat ) =/= (/) ) with typecode |-
26 25 adantr Could not format ( ( ph /\ X ( ~=c ` C ) Y ) -> ( U i^i TermCat ) =/= (/) ) : No typesetting found for |- ( ( ph /\ X ( ~=c ` C ) Y ) -> ( U i^i TermCat ) =/= (/) ) with typecode |-
27 9 adantr φ X 𝑐 C Y C Cat
28 14 adantr φ X 𝑐 C Y X TermO C
29 simpr φ X 𝑐 C Y X 𝑐 C Y
30 27 28 29 termoeu2 φ X 𝑐 C Y Y TermO C
31 1 26 30 termcterm2 Could not format ( ( ph /\ X ( ~=c ` C ) Y ) -> Y e. TermCat ) : No typesetting found for |- ( ( ph /\ X ( ~=c ` C ) Y ) -> Y e. TermCat ) with typecode |-
32 23 31 impbida Could not format ( ph -> ( Y e. TermCat <-> X ( ~=c ` C ) Y ) ) : No typesetting found for |- ( ph -> ( Y e. TermCat <-> X ( ~=c ` C ) Y ) ) with typecode |-