Metamath Proof Explorer


Theorem termoeu2

Description: Terminal objects are essentially unique; if A is a terminal object, then so is every object that is isomorphic to A . (Contributed by Zhi Wang, 26-Oct-2025)

Ref Expression
Hypotheses termoeu2.c φ C Cat
termoeu2.a φ A TermO C
termoeu2.i φ A 𝑐 C B
Assertion termoeu2 φ B TermO C

Proof

Step Hyp Ref Expression
1 termoeu2.c φ C Cat
2 termoeu2.a φ A TermO C
3 termoeu2.i φ A 𝑐 C B
4 eqid oppCat C = oppCat C
5 4 oppccat C Cat oppCat C Cat
6 1 5 syl φ oppCat C Cat
7 oppctermo A TermO C A InitO oppCat C
8 2 7 sylib φ A InitO oppCat C
9 4 3 oppccic φ A 𝑐 oppCat C B
10 6 8 9 initoeu2 φ B InitO oppCat C
11 oppctermo B TermO C B InitO oppCat C
12 10 11 sylibr φ B TermO C