Metamath Proof Explorer


Theorem oppccic

Description: Isomorphic objects are isomorphic in the opposite category. (Contributed by Zhi Wang, 26-Oct-2025)

Ref Expression
Hypotheses oppccic.o O = oppCat C
oppccic.i φ R 𝑐 C S
Assertion oppccic φ R 𝑐 O S

Proof

Step Hyp Ref Expression
1 oppccic.o O = oppCat C
2 oppccic.i φ R 𝑐 C S
3 cicrcl2 R 𝑐 C S C Cat
4 2 3 syl φ C Cat
5 1 oppccat C Cat O Cat
6 4 5 syl φ O Cat
7 eqid Base C = Base C
8 cicrcl C Cat R 𝑐 C S S Base C
9 4 2 8 syl2anc φ S Base C
10 ciclcl C Cat R 𝑐 C S R Base C
11 4 2 10 syl2anc φ R Base C
12 eqid Iso C = Iso C
13 eqid Iso O = Iso O
14 7 1 4 9 11 12 13 oppciso φ S Iso O R = R Iso C S
15 14 neeq1d φ S Iso O R R Iso C S
16 1 7 oppcbas Base C = Base O
17 13 16 6 9 11 brcic φ S 𝑐 O R S Iso O R
18 12 7 4 11 9 brcic φ R 𝑐 C S R Iso C S
19 15 17 18 3bitr4rd φ R 𝑐 C S S 𝑐 O R
20 2 19 mpbid φ S 𝑐 O R
21 cicsym O Cat S 𝑐 O R R 𝑐 O S
22 6 20 21 syl2anc φ R 𝑐 O S