Metamath Proof Explorer


Theorem ciclcl

Description: Isomorphism implies the left side is an object. (Contributed by AV, 5-Apr-2020)

Ref Expression
Assertion ciclcl CCatR𝑐CSRBaseC

Proof

Step Hyp Ref Expression
1 cicfval CCat𝑐C=IsoCsupp
2 1 breqd CCatR𝑐CSRsuppIsoCS
3 isofn CCatIsoCFnBaseC×BaseC
4 fvexd CCatIsoCV
5 0ex V
6 5 a1i CCatV
7 df-br RsuppIsoCSRSsuppIsoC
8 elsuppfng IsoCFnBaseC×BaseCIsoCVVRSsuppIsoCRSBaseC×BaseCIsoCRS
9 7 8 bitrid IsoCFnBaseC×BaseCIsoCVVRsuppIsoCSRSBaseC×BaseCIsoCRS
10 3 4 6 9 syl3anc CCatRsuppIsoCSRSBaseC×BaseCIsoCRS
11 opelxp1 RSBaseC×BaseCRBaseC
12 11 adantr RSBaseC×BaseCIsoCRSRBaseC
13 10 12 syl6bi CCatRsuppIsoCSRBaseC
14 2 13 sylbid CCatR𝑐CSRBaseC
15 14 imp CCatR𝑐CSRBaseC