Metamath Proof Explorer


Theorem cicrcl

Description: Isomorphism implies the right side is an object. (Contributed by AV, 5-Apr-2020)

Ref Expression
Assertion cicrcl CCatR𝑐CSSBaseC

Proof

Step Hyp Ref Expression
1 cicfval CCat𝑐C=IsoCsupp
2 1 breqd CCatR𝑐CSRsuppIsoCS
3 isofn CCatIsoCFnBaseC×BaseC
4 fvexd CCatIsoCV
5 0ex V
6 5 a1i CCatV
7 df-br RsuppIsoCSRSsuppIsoC
8 elsuppfng IsoCFnBaseC×BaseCIsoCVVRSsuppIsoCRSBaseC×BaseCIsoCRS
9 7 8 bitrid IsoCFnBaseC×BaseCIsoCVVRsuppIsoCSRSBaseC×BaseCIsoCRS
10 3 4 6 9 syl3anc CCatRsuppIsoCSRSBaseC×BaseCIsoCRS
11 opelxp2 RSBaseC×BaseCSBaseC
12 11 adantr RSBaseC×BaseCIsoCRSSBaseC
13 10 12 syl6bi CCatRsuppIsoCSSBaseC
14 2 13 sylbid CCatR𝑐CSSBaseC
15 14 imp CCatR𝑐CSSBaseC