| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cicfval |
|- ( C e. Cat -> ( ~=c ` C ) = ( ( Iso ` C ) supp (/) ) ) |
| 2 |
1
|
breqd |
|- ( C e. Cat -> ( R ( ~=c ` C ) S <-> R ( ( Iso ` C ) supp (/) ) S ) ) |
| 3 |
|
isofn |
|- ( C e. Cat -> ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 4 |
|
fvexd |
|- ( C e. Cat -> ( Iso ` C ) e. _V ) |
| 5 |
|
0ex |
|- (/) e. _V |
| 6 |
5
|
a1i |
|- ( C e. Cat -> (/) e. _V ) |
| 7 |
|
df-br |
|- ( R ( ( Iso ` C ) supp (/) ) S <-> <. R , S >. e. ( ( Iso ` C ) supp (/) ) ) |
| 8 |
|
elsuppfng |
|- ( ( ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) /\ ( Iso ` C ) e. _V /\ (/) e. _V ) -> ( <. R , S >. e. ( ( Iso ` C ) supp (/) ) <-> ( <. R , S >. e. ( ( Base ` C ) X. ( Base ` C ) ) /\ ( ( Iso ` C ) ` <. R , S >. ) =/= (/) ) ) ) |
| 9 |
7 8
|
bitrid |
|- ( ( ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) /\ ( Iso ` C ) e. _V /\ (/) e. _V ) -> ( R ( ( Iso ` C ) supp (/) ) S <-> ( <. R , S >. e. ( ( Base ` C ) X. ( Base ` C ) ) /\ ( ( Iso ` C ) ` <. R , S >. ) =/= (/) ) ) ) |
| 10 |
3 4 6 9
|
syl3anc |
|- ( C e. Cat -> ( R ( ( Iso ` C ) supp (/) ) S <-> ( <. R , S >. e. ( ( Base ` C ) X. ( Base ` C ) ) /\ ( ( Iso ` C ) ` <. R , S >. ) =/= (/) ) ) ) |
| 11 |
|
opelxp2 |
|- ( <. R , S >. e. ( ( Base ` C ) X. ( Base ` C ) ) -> S e. ( Base ` C ) ) |
| 12 |
11
|
adantr |
|- ( ( <. R , S >. e. ( ( Base ` C ) X. ( Base ` C ) ) /\ ( ( Iso ` C ) ` <. R , S >. ) =/= (/) ) -> S e. ( Base ` C ) ) |
| 13 |
10 12
|
biimtrdi |
|- ( C e. Cat -> ( R ( ( Iso ` C ) supp (/) ) S -> S e. ( Base ` C ) ) ) |
| 14 |
2 13
|
sylbid |
|- ( C e. Cat -> ( R ( ~=c ` C ) S -> S e. ( Base ` C ) ) ) |
| 15 |
14
|
imp |
|- ( ( C e. Cat /\ R ( ~=c ` C ) S ) -> S e. ( Base ` C ) ) |