Metamath Proof Explorer


Theorem cicfval

Description: The set of isomorphic objects of the category c . (Contributed by AV, 4-Apr-2020)

Ref Expression
Assertion cicfval CCat𝑐C=IsoCsupp

Proof

Step Hyp Ref Expression
1 df-cic 𝑐=cCatIsocsupp
2 fveq2 c=CIsoc=IsoC
3 2 oveq1d c=CIsocsupp=IsoCsupp
4 id CCatCCat
5 ovexd CCatIsoCsuppV
6 1 3 4 5 fvmptd3 CCat𝑐C=IsoCsupp