Metamath Proof Explorer


Theorem cicsym

Description: Isomorphism is symmetric. (Contributed by AV, 5-Apr-2020)

Ref Expression
Assertion cicsym CCatR𝑐CSS𝑐CR

Proof

Step Hyp Ref Expression
1 cicrcl CCatR𝑐CSSBaseC
2 ciclcl CCatR𝑐CSRBaseC
3 eqid IsoC=IsoC
4 eqid BaseC=BaseC
5 simpl CCatSBaseCRBaseCCCat
6 simpr SBaseCRBaseCRBaseC
7 6 adantl CCatSBaseCRBaseCRBaseC
8 simpl SBaseCRBaseCSBaseC
9 8 adantl CCatSBaseCRBaseCSBaseC
10 3 4 5 7 9 cic CCatSBaseCRBaseCR𝑐CSffRIsoCS
11 eqid InvC=InvC
12 4 11 5 7 9 3 isoval CCatSBaseCRBaseCRIsoCS=domRInvCS
13 4 11 5 9 7 invsym2 CCatSBaseCRBaseCSInvCR-1=RInvCS
14 13 eqcomd CCatSBaseCRBaseCRInvCS=SInvCR-1
15 14 dmeqd CCatSBaseCRBaseCdomRInvCS=domSInvCR-1
16 df-rn ranSInvCR=domSInvCR-1
17 15 16 eqtr4di CCatSBaseCRBaseCdomRInvCS=ranSInvCR
18 12 17 eqtrd CCatSBaseCRBaseCRIsoCS=ranSInvCR
19 18 eleq2d CCatSBaseCRBaseCfRIsoCSfranSInvCR
20 vex fV
21 elrng fVfranSInvCRggSInvCRf
22 20 21 mp1i CCatSBaseCRBaseCfranSInvCRggSInvCRf
23 19 22 bitrd CCatSBaseCRBaseCfRIsoCSggSInvCRf
24 df-br gSInvCRfgfSInvCR
25 24 exbii ggSInvCRfggfSInvCR
26 vex gV
27 26 20 opeldm gfSInvCRgdomSInvCR
28 4 11 5 9 7 3 isoval CCatSBaseCRBaseCSIsoCR=domSInvCR
29 28 eqcomd CCatSBaseCRBaseCdomSInvCR=SIsoCR
30 29 eleq2d CCatSBaseCRBaseCgdomSInvCRgSIsoCR
31 5 adantr CCatSBaseCRBaseCgSIsoCRCCat
32 9 adantr CCatSBaseCRBaseCgSIsoCRSBaseC
33 7 adantr CCatSBaseCRBaseCgSIsoCRRBaseC
34 simpr CCatSBaseCRBaseCgSIsoCRgSIsoCR
35 3 4 31 32 33 34 brcici CCatSBaseCRBaseCgSIsoCRS𝑐CR
36 35 ex CCatSBaseCRBaseCgSIsoCRS𝑐CR
37 30 36 sylbid CCatSBaseCRBaseCgdomSInvCRS𝑐CR
38 27 37 syl5com gfSInvCRCCatSBaseCRBaseCS𝑐CR
39 38 exlimiv ggfSInvCRCCatSBaseCRBaseCS𝑐CR
40 39 com12 CCatSBaseCRBaseCggfSInvCRS𝑐CR
41 25 40 biimtrid CCatSBaseCRBaseCggSInvCRfS𝑐CR
42 23 41 sylbid CCatSBaseCRBaseCfRIsoCSS𝑐CR
43 42 exlimdv CCatSBaseCRBaseCffRIsoCSS𝑐CR
44 10 43 sylbid CCatSBaseCRBaseCR𝑐CSS𝑐CR
45 44 impancom CCatR𝑐CSSBaseCRBaseCS𝑐CR
46 1 2 45 mp2and CCatR𝑐CSS𝑐CR