| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ciclcl |
|
| 2 |
|
cicrcl |
|
| 3 |
1 2
|
jca |
|
| 4 |
3
|
ex |
|
| 5 |
|
cicrcl |
|
| 6 |
5
|
ex |
|
| 7 |
4 6
|
anim12d |
|
| 8 |
7
|
3impib |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
|
simpl |
|
| 12 |
|
simpll |
|
| 13 |
12
|
adantl |
|
| 14 |
|
simplr |
|
| 15 |
14
|
adantl |
|
| 16 |
9 10 11 13 15
|
cic |
|
| 17 |
|
simprr |
|
| 18 |
9 10 11 15 17
|
cic |
|
| 19 |
16 18
|
anbi12d |
|
| 20 |
11
|
adantl |
|
| 21 |
13
|
adantl |
|
| 22 |
17
|
adantl |
|
| 23 |
|
eqid |
|
| 24 |
15
|
adantl |
|
| 25 |
|
simplr |
|
| 26 |
|
simpll |
|
| 27 |
10 23 9 20 21 24 22 25 26
|
isoco |
|
| 28 |
9 10 20 21 22 27
|
brcici |
|
| 29 |
28
|
ex |
|
| 30 |
29
|
ex |
|
| 31 |
30
|
exlimiv |
|
| 32 |
31
|
com12 |
|
| 33 |
32
|
exlimiv |
|
| 34 |
33
|
imp |
|
| 35 |
34
|
com12 |
|
| 36 |
19 35
|
sylbid |
|
| 37 |
36
|
ex |
|
| 38 |
37
|
com23 |
|
| 39 |
38
|
3impib |
|
| 40 |
8 39
|
mpd |
|