Metamath Proof Explorer


Theorem cictr

Description: Isomorphism is transitive. (Contributed by AV, 5-Apr-2020)

Ref Expression
Assertion cictr CCatR𝑐CSS𝑐CTR𝑐CT

Proof

Step Hyp Ref Expression
1 ciclcl CCatR𝑐CSRBaseC
2 cicrcl CCatR𝑐CSSBaseC
3 1 2 jca CCatR𝑐CSRBaseCSBaseC
4 3 ex CCatR𝑐CSRBaseCSBaseC
5 cicrcl CCatS𝑐CTTBaseC
6 5 ex CCatS𝑐CTTBaseC
7 4 6 anim12d CCatR𝑐CSS𝑐CTRBaseCSBaseCTBaseC
8 7 3impib CCatR𝑐CSS𝑐CTRBaseCSBaseCTBaseC
9 eqid IsoC=IsoC
10 eqid BaseC=BaseC
11 simpl CCatRBaseCSBaseCTBaseCCCat
12 simpll RBaseCSBaseCTBaseCRBaseC
13 12 adantl CCatRBaseCSBaseCTBaseCRBaseC
14 simplr RBaseCSBaseCTBaseCSBaseC
15 14 adantl CCatRBaseCSBaseCTBaseCSBaseC
16 9 10 11 13 15 cic CCatRBaseCSBaseCTBaseCR𝑐CSffRIsoCS
17 simprr CCatRBaseCSBaseCTBaseCTBaseC
18 9 10 11 15 17 cic CCatRBaseCSBaseCTBaseCS𝑐CTggSIsoCT
19 16 18 anbi12d CCatRBaseCSBaseCTBaseCR𝑐CSS𝑐CTffRIsoCSggSIsoCT
20 11 adantl gSIsoCTfRIsoCSCCatRBaseCSBaseCTBaseCCCat
21 13 adantl gSIsoCTfRIsoCSCCatRBaseCSBaseCTBaseCRBaseC
22 17 adantl gSIsoCTfRIsoCSCCatRBaseCSBaseCTBaseCTBaseC
23 eqid compC=compC
24 15 adantl gSIsoCTfRIsoCSCCatRBaseCSBaseCTBaseCSBaseC
25 simplr gSIsoCTfRIsoCSCCatRBaseCSBaseCTBaseCfRIsoCS
26 simpll gSIsoCTfRIsoCSCCatRBaseCSBaseCTBaseCgSIsoCT
27 10 23 9 20 21 24 22 25 26 isoco gSIsoCTfRIsoCSCCatRBaseCSBaseCTBaseCgRScompCTfRIsoCT
28 9 10 20 21 22 27 brcici gSIsoCTfRIsoCSCCatRBaseCSBaseCTBaseCR𝑐CT
29 28 ex gSIsoCTfRIsoCSCCatRBaseCSBaseCTBaseCR𝑐CT
30 29 ex gSIsoCTfRIsoCSCCatRBaseCSBaseCTBaseCR𝑐CT
31 30 exlimiv ggSIsoCTfRIsoCSCCatRBaseCSBaseCTBaseCR𝑐CT
32 31 com12 fRIsoCSggSIsoCTCCatRBaseCSBaseCTBaseCR𝑐CT
33 32 exlimiv ffRIsoCSggSIsoCTCCatRBaseCSBaseCTBaseCR𝑐CT
34 33 imp ffRIsoCSggSIsoCTCCatRBaseCSBaseCTBaseCR𝑐CT
35 34 com12 CCatRBaseCSBaseCTBaseCffRIsoCSggSIsoCTR𝑐CT
36 19 35 sylbid CCatRBaseCSBaseCTBaseCR𝑐CSS𝑐CTR𝑐CT
37 36 ex CCatRBaseCSBaseCTBaseCR𝑐CSS𝑐CTR𝑐CT
38 37 com23 CCatR𝑐CSS𝑐CTRBaseCSBaseCTBaseCR𝑐CT
39 38 3impib CCatR𝑐CSS𝑐CTRBaseCSBaseCTBaseCR𝑐CT
40 8 39 mpd CCatR𝑐CSS𝑐CTR𝑐CT