| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppccic.o |
|- O = ( oppCat ` C ) |
| 2 |
|
oppccic.i |
|- ( ph -> R ( ~=c ` C ) S ) |
| 3 |
|
cicrcl2 |
|- ( R ( ~=c ` C ) S -> C e. Cat ) |
| 4 |
2 3
|
syl |
|- ( ph -> C e. Cat ) |
| 5 |
1
|
oppccat |
|- ( C e. Cat -> O e. Cat ) |
| 6 |
4 5
|
syl |
|- ( ph -> O e. Cat ) |
| 7 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 8 |
|
cicrcl |
|- ( ( C e. Cat /\ R ( ~=c ` C ) S ) -> S e. ( Base ` C ) ) |
| 9 |
4 2 8
|
syl2anc |
|- ( ph -> S e. ( Base ` C ) ) |
| 10 |
|
ciclcl |
|- ( ( C e. Cat /\ R ( ~=c ` C ) S ) -> R e. ( Base ` C ) ) |
| 11 |
4 2 10
|
syl2anc |
|- ( ph -> R e. ( Base ` C ) ) |
| 12 |
|
eqid |
|- ( Iso ` C ) = ( Iso ` C ) |
| 13 |
|
eqid |
|- ( Iso ` O ) = ( Iso ` O ) |
| 14 |
7 1 4 9 11 12 13
|
oppciso |
|- ( ph -> ( S ( Iso ` O ) R ) = ( R ( Iso ` C ) S ) ) |
| 15 |
14
|
neeq1d |
|- ( ph -> ( ( S ( Iso ` O ) R ) =/= (/) <-> ( R ( Iso ` C ) S ) =/= (/) ) ) |
| 16 |
1 7
|
oppcbas |
|- ( Base ` C ) = ( Base ` O ) |
| 17 |
13 16 6 9 11
|
brcic |
|- ( ph -> ( S ( ~=c ` O ) R <-> ( S ( Iso ` O ) R ) =/= (/) ) ) |
| 18 |
12 7 4 11 9
|
brcic |
|- ( ph -> ( R ( ~=c ` C ) S <-> ( R ( Iso ` C ) S ) =/= (/) ) ) |
| 19 |
15 17 18
|
3bitr4rd |
|- ( ph -> ( R ( ~=c ` C ) S <-> S ( ~=c ` O ) R ) ) |
| 20 |
2 19
|
mpbid |
|- ( ph -> S ( ~=c ` O ) R ) |
| 21 |
|
cicsym |
|- ( ( O e. Cat /\ S ( ~=c ` O ) R ) -> R ( ~=c ` O ) S ) |
| 22 |
6 20 21
|
syl2anc |
|- ( ph -> R ( ~=c ` O ) S ) |