Metamath Proof Explorer


Theorem oppciso

Description: An isomorphism in the opposite category. See also remark 3.9 in Adamek p. 28. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses oppcsect.b
|- B = ( Base ` C )
oppcsect.o
|- O = ( oppCat ` C )
oppcsect.c
|- ( ph -> C e. Cat )
oppcsect.x
|- ( ph -> X e. B )
oppcsect.y
|- ( ph -> Y e. B )
oppciso.s
|- I = ( Iso ` C )
oppciso.t
|- J = ( Iso ` O )
Assertion oppciso
|- ( ph -> ( X J Y ) = ( Y I X ) )

Proof

Step Hyp Ref Expression
1 oppcsect.b
 |-  B = ( Base ` C )
2 oppcsect.o
 |-  O = ( oppCat ` C )
3 oppcsect.c
 |-  ( ph -> C e. Cat )
4 oppcsect.x
 |-  ( ph -> X e. B )
5 oppcsect.y
 |-  ( ph -> Y e. B )
6 oppciso.s
 |-  I = ( Iso ` C )
7 oppciso.t
 |-  J = ( Iso ` O )
8 eqid
 |-  ( Inv ` C ) = ( Inv ` C )
9 eqid
 |-  ( Inv ` O ) = ( Inv ` O )
10 1 2 3 4 5 8 9 oppcinv
 |-  ( ph -> ( X ( Inv ` O ) Y ) = ( Y ( Inv ` C ) X ) )
11 10 dmeqd
 |-  ( ph -> dom ( X ( Inv ` O ) Y ) = dom ( Y ( Inv ` C ) X ) )
12 2 1 oppcbas
 |-  B = ( Base ` O )
13 2 oppccat
 |-  ( C e. Cat -> O e. Cat )
14 3 13 syl
 |-  ( ph -> O e. Cat )
15 12 9 14 4 5 7 isoval
 |-  ( ph -> ( X J Y ) = dom ( X ( Inv ` O ) Y ) )
16 1 8 3 5 4 6 isoval
 |-  ( ph -> ( Y I X ) = dom ( Y ( Inv ` C ) X ) )
17 11 15 16 3eqtr4d
 |-  ( ph -> ( X J Y ) = ( Y I X ) )