Metamath Proof Explorer


Theorem oppciso

Description: An isomorphism in the opposite category. See also remark 3.9 in Adamek p. 28. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses oppcsect.b B = Base C
oppcsect.o O = oppCat C
oppcsect.c φ C Cat
oppcsect.x φ X B
oppcsect.y φ Y B
oppciso.s I = Iso C
oppciso.t J = Iso O
Assertion oppciso φ X J Y = Y I X

Proof

Step Hyp Ref Expression
1 oppcsect.b B = Base C
2 oppcsect.o O = oppCat C
3 oppcsect.c φ C Cat
4 oppcsect.x φ X B
5 oppcsect.y φ Y B
6 oppciso.s I = Iso C
7 oppciso.t J = Iso O
8 eqid Inv C = Inv C
9 eqid Inv O = Inv O
10 1 2 3 4 5 8 9 oppcinv φ X Inv O Y = Y Inv C X
11 10 dmeqd φ dom X Inv O Y = dom Y Inv C X
12 2 1 oppcbas B = Base O
13 2 oppccat C Cat O Cat
14 3 13 syl φ O Cat
15 12 9 14 4 5 7 isoval φ X J Y = dom X Inv O Y
16 1 8 3 5 4 6 isoval φ Y I X = dom Y Inv C X
17 11 15 16 3eqtr4d φ X J Y = Y I X