| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppccic.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
oppccic.i |
⊢ ( 𝜑 → 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ) |
| 3 |
|
cicrcl2 |
⊢ ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 → 𝐶 ∈ Cat ) |
| 4 |
2 3
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 5 |
1
|
oppccat |
⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) |
| 6 |
4 5
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ Cat ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 8 |
|
cicrcl |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ) → 𝑆 ∈ ( Base ‘ 𝐶 ) ) |
| 9 |
4 2 8
|
syl2anc |
⊢ ( 𝜑 → 𝑆 ∈ ( Base ‘ 𝐶 ) ) |
| 10 |
|
ciclcl |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ) → 𝑅 ∈ ( Base ‘ 𝐶 ) ) |
| 11 |
4 2 10
|
syl2anc |
⊢ ( 𝜑 → 𝑅 ∈ ( Base ‘ 𝐶 ) ) |
| 12 |
|
eqid |
⊢ ( Iso ‘ 𝐶 ) = ( Iso ‘ 𝐶 ) |
| 13 |
|
eqid |
⊢ ( Iso ‘ 𝑂 ) = ( Iso ‘ 𝑂 ) |
| 14 |
7 1 4 9 11 12 13
|
oppciso |
⊢ ( 𝜑 → ( 𝑆 ( Iso ‘ 𝑂 ) 𝑅 ) = ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) ) |
| 15 |
14
|
neeq1d |
⊢ ( 𝜑 → ( ( 𝑆 ( Iso ‘ 𝑂 ) 𝑅 ) ≠ ∅ ↔ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) ≠ ∅ ) ) |
| 16 |
1 7
|
oppcbas |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
| 17 |
13 16 6 9 11
|
brcic |
⊢ ( 𝜑 → ( 𝑆 ( ≃𝑐 ‘ 𝑂 ) 𝑅 ↔ ( 𝑆 ( Iso ‘ 𝑂 ) 𝑅 ) ≠ ∅ ) ) |
| 18 |
12 7 4 11 9
|
brcic |
⊢ ( 𝜑 → ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ↔ ( 𝑅 ( Iso ‘ 𝐶 ) 𝑆 ) ≠ ∅ ) ) |
| 19 |
15 17 18
|
3bitr4rd |
⊢ ( 𝜑 → ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ↔ 𝑆 ( ≃𝑐 ‘ 𝑂 ) 𝑅 ) ) |
| 20 |
2 19
|
mpbid |
⊢ ( 𝜑 → 𝑆 ( ≃𝑐 ‘ 𝑂 ) 𝑅 ) |
| 21 |
|
cicsym |
⊢ ( ( 𝑂 ∈ Cat ∧ 𝑆 ( ≃𝑐 ‘ 𝑂 ) 𝑅 ) → 𝑅 ( ≃𝑐 ‘ 𝑂 ) 𝑆 ) |
| 22 |
6 20 21
|
syl2anc |
⊢ ( 𝜑 → 𝑅 ( ≃𝑐 ‘ 𝑂 ) 𝑆 ) |