Description: Isomorphism implies the structure being a category. (Contributed by Zhi Wang, 26-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cicrcl2 | ⊢ ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 → 𝐶 ∈ Cat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br | ⊢ ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 ↔ 〈 𝑅 , 𝑆 〉 ∈ ( ≃𝑐 ‘ 𝐶 ) ) | |
| 2 | elfvdm | ⊢ ( 〈 𝑅 , 𝑆 〉 ∈ ( ≃𝑐 ‘ 𝐶 ) → 𝐶 ∈ dom ≃𝑐 ) | |
| 3 | cicfn | ⊢ ≃𝑐 Fn Cat | |
| 4 | 3 | fndmi | ⊢ dom ≃𝑐 = Cat |
| 5 | 2 4 | eleqtrdi | ⊢ ( 〈 𝑅 , 𝑆 〉 ∈ ( ≃𝑐 ‘ 𝐶 ) → 𝐶 ∈ Cat ) |
| 6 | 1 5 | sylbi | ⊢ ( 𝑅 ( ≃𝑐 ‘ 𝐶 ) 𝑆 → 𝐶 ∈ Cat ) |