Metamath Proof Explorer


Theorem cicrcl2

Description: Isomorphism implies the structure being a category. (Contributed by Zhi Wang, 26-Oct-2025)

Ref Expression
Assertion cicrcl2 ( 𝑅 ( ≃𝑐𝐶 ) 𝑆𝐶 ∈ Cat )

Proof

Step Hyp Ref Expression
1 df-br ( 𝑅 ( ≃𝑐𝐶 ) 𝑆 ↔ ⟨ 𝑅 , 𝑆 ⟩ ∈ ( ≃𝑐𝐶 ) )
2 elfvdm ( ⟨ 𝑅 , 𝑆 ⟩ ∈ ( ≃𝑐𝐶 ) → 𝐶 ∈ dom ≃𝑐 )
3 cicfn 𝑐 Fn Cat
4 3 fndmi dom ≃𝑐 = Cat
5 2 4 eleqtrdi ( ⟨ 𝑅 , 𝑆 ⟩ ∈ ( ≃𝑐𝐶 ) → 𝐶 ∈ Cat )
6 1 5 sylbi ( 𝑅 ( ≃𝑐𝐶 ) 𝑆𝐶 ∈ Cat )