Metamath Proof Explorer


Theorem cicrcl2

Description: Isomorphism implies the structure being a category. (Contributed by Zhi Wang, 26-Oct-2025)

Ref Expression
Assertion cicrcl2 R 𝑐 C S C Cat

Proof

Step Hyp Ref Expression
1 df-br R 𝑐 C S R S 𝑐 C
2 elfvdm R S 𝑐 C C dom 𝑐
3 cicfn 𝑐 Fn Cat
4 3 fndmi dom 𝑐 = Cat
5 2 4 eleqtrdi R S 𝑐 C C Cat
6 1 5 sylbi R 𝑐 C S C Cat