Description: Isomorphism implies the structure being a category. (Contributed by Zhi Wang, 26-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cicrcl2 | |- ( R ( ~=c ` C ) S -> C e. Cat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br | |- ( R ( ~=c ` C ) S <-> <. R , S >. e. ( ~=c ` C ) ) |
|
| 2 | elfvdm | |- ( <. R , S >. e. ( ~=c ` C ) -> C e. dom ~=c ) |
|
| 3 | cicfn | |- ~=c Fn Cat |
|
| 4 | 3 | fndmi | |- dom ~=c = Cat |
| 5 | 2 4 | eleqtrdi | |- ( <. R , S >. e. ( ~=c ` C ) -> C e. Cat ) |
| 6 | 1 5 | sylbi | |- ( R ( ~=c ` C ) S -> C e. Cat ) |