Metamath Proof Explorer


Theorem cicrcl2

Description: Isomorphism implies the structure being a category. (Contributed by Zhi Wang, 26-Oct-2025)

Ref Expression
Assertion cicrcl2
|- ( R ( ~=c ` C ) S -> C e. Cat )

Proof

Step Hyp Ref Expression
1 df-br
 |-  ( R ( ~=c ` C ) S <-> <. R , S >. e. ( ~=c ` C ) )
2 elfvdm
 |-  ( <. R , S >. e. ( ~=c ` C ) -> C e. dom ~=c )
3 cicfn
 |-  ~=c Fn Cat
4 3 fndmi
 |-  dom ~=c = Cat
5 2 4 eleqtrdi
 |-  ( <. R , S >. e. ( ~=c ` C ) -> C e. Cat )
6 1 5 sylbi
 |-  ( R ( ~=c ` C ) S -> C e. Cat )