Metamath Proof Explorer


Theorem relcic

Description: The set of isomorphic objects is a relation. Simplifies cicer (see cicerALT ). (Contributed by Zhi Wang, 27-Oct-2025)

Ref Expression
Assertion relcic C Cat Rel 𝑐 C

Proof

Step Hyp Ref Expression
1 relopab Rel x y | x Base C y Base C Iso C x y
2 1 a1i C Cat Rel x y | x Base C y Base C Iso C x y
3 fveq2 f = x y Iso C f = Iso C x y
4 3 neeq1d f = x y Iso C f Iso C x y
5 4 rabxp f Base C × Base C | Iso C f = x y | x Base C y Base C Iso C x y
6 5 a1i C Cat f Base C × Base C | Iso C f = x y | x Base C y Base C Iso C x y
7 6 releqd C Cat Rel f Base C × Base C | Iso C f Rel x y | x Base C y Base C Iso C x y
8 2 7 mpbird C Cat Rel f Base C × Base C | Iso C f
9 isofn C Cat Iso C Fn Base C × Base C
10 fvex Base C V
11 sqxpexg Base C V Base C × Base C V
12 10 11 mp1i C Cat Base C × Base C V
13 0ex V
14 13 a1i C Cat V
15 suppvalfn Iso C Fn Base C × Base C Base C × Base C V V Iso C supp = f Base C × Base C | Iso C f
16 9 12 14 15 syl3anc C Cat Iso C supp = f Base C × Base C | Iso C f
17 16 releqd C Cat Rel supp Iso C Rel f Base C × Base C | Iso C f
18 8 17 mpbird C Cat Rel supp Iso C
19 cicfval C Cat 𝑐 C = Iso C supp
20 19 releqd C Cat Rel 𝑐 C Rel supp Iso C
21 18 20 mpbird C Cat Rel 𝑐 C