Metamath Proof Explorer


Theorem cicerALT

Description: Isomorphism is an equivalence relation on objects of a category. Remark 3.16 in Adamek p. 29. (Contributed by AV, 5-Apr-2020) (Proof shortened by Zhi Wang, 3-Nov-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion cicerALT C Cat 𝑐 C Er Base C

Proof

Step Hyp Ref Expression
1 relcic C Cat Rel 𝑐 C
2 cicsym C Cat x 𝑐 C y y 𝑐 C x
3 cictr C Cat x 𝑐 C y y 𝑐 C z x 𝑐 C z
4 3 3expb C Cat x 𝑐 C y y 𝑐 C z x 𝑐 C z
5 cicref C Cat x Base C x 𝑐 C x
6 ciclcl C Cat x 𝑐 C x x Base C
7 5 6 impbida C Cat x Base C x 𝑐 C x
8 1 2 4 7 iserd C Cat 𝑐 C Er Base C