| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relcic |
|- ( C e. Cat -> Rel ( ~=c ` C ) ) |
| 2 |
|
cicsym |
|- ( ( C e. Cat /\ x ( ~=c ` C ) y ) -> y ( ~=c ` C ) x ) |
| 3 |
|
cictr |
|- ( ( C e. Cat /\ x ( ~=c ` C ) y /\ y ( ~=c ` C ) z ) -> x ( ~=c ` C ) z ) |
| 4 |
3
|
3expb |
|- ( ( C e. Cat /\ ( x ( ~=c ` C ) y /\ y ( ~=c ` C ) z ) ) -> x ( ~=c ` C ) z ) |
| 5 |
|
cicref |
|- ( ( C e. Cat /\ x e. ( Base ` C ) ) -> x ( ~=c ` C ) x ) |
| 6 |
|
ciclcl |
|- ( ( C e. Cat /\ x ( ~=c ` C ) x ) -> x e. ( Base ` C ) ) |
| 7 |
5 6
|
impbida |
|- ( C e. Cat -> ( x e. ( Base ` C ) <-> x ( ~=c ` C ) x ) ) |
| 8 |
1 2 4 7
|
iserd |
|- ( C e. Cat -> ( ~=c ` C ) Er ( Base ` C ) ) |