Metamath Proof Explorer


Theorem cicerALT

Description: Isomorphism is an equivalence relation on objects of a category. Remark 3.16 in Adamek p. 29. (Contributed by AV, 5-Apr-2020) (Proof shortened by Zhi Wang, 3-Nov-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion cicerALT
|- ( C e. Cat -> ( ~=c ` C ) Er ( Base ` C ) )

Proof

Step Hyp Ref Expression
1 relcic
 |-  ( C e. Cat -> Rel ( ~=c ` C ) )
2 cicsym
 |-  ( ( C e. Cat /\ x ( ~=c ` C ) y ) -> y ( ~=c ` C ) x )
3 cictr
 |-  ( ( C e. Cat /\ x ( ~=c ` C ) y /\ y ( ~=c ` C ) z ) -> x ( ~=c ` C ) z )
4 3 3expb
 |-  ( ( C e. Cat /\ ( x ( ~=c ` C ) y /\ y ( ~=c ` C ) z ) ) -> x ( ~=c ` C ) z )
5 cicref
 |-  ( ( C e. Cat /\ x e. ( Base ` C ) ) -> x ( ~=c ` C ) x )
6 ciclcl
 |-  ( ( C e. Cat /\ x ( ~=c ` C ) x ) -> x e. ( Base ` C ) )
7 5 6 impbida
 |-  ( C e. Cat -> ( x e. ( Base ` C ) <-> x ( ~=c ` C ) x ) )
8 1 2 4 7 iserd
 |-  ( C e. Cat -> ( ~=c ` C ) Er ( Base ` C ) )