| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relcic |
⊢ ( 𝐶 ∈ Cat → Rel ( ≃𝑐 ‘ 𝐶 ) ) |
| 2 |
|
cicsym |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑦 ) → 𝑦 ( ≃𝑐 ‘ 𝐶 ) 𝑥 ) |
| 3 |
|
cictr |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( ≃𝑐 ‘ 𝐶 ) 𝑧 ) → 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑧 ) |
| 4 |
3
|
3expb |
⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( ≃𝑐 ‘ 𝐶 ) 𝑧 ) ) → 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑧 ) |
| 5 |
|
cicref |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑥 ) |
| 6 |
|
ciclcl |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑥 ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 7 |
5 6
|
impbida |
⊢ ( 𝐶 ∈ Cat → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↔ 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑥 ) ) |
| 8 |
1 2 4 7
|
iserd |
⊢ ( 𝐶 ∈ Cat → ( ≃𝑐 ‘ 𝐶 ) Er ( Base ‘ 𝐶 ) ) |