Metamath Proof Explorer


Theorem cicref

Description: Isomorphism is reflexive. (Contributed by AV, 5-Apr-2020)

Ref Expression
Assertion cicref CCatOBaseCO𝑐CO

Proof

Step Hyp Ref Expression
1 eqid IsoC=IsoC
2 eqid BaseC=BaseC
3 simpl CCatOBaseCCCat
4 simpr CCatOBaseCOBaseC
5 eqid IdC=IdC
6 2 5 3 4 idiso CCatOBaseCIdCOOIsoCO
7 1 2 3 4 4 6 brcici CCatOBaseCO𝑐CO