Metamath Proof Explorer


Theorem idiso

Description: The identity is an isomorphism. Example 3.13 of Adamek p. 28. (Contributed by AV, 8-Apr-2020)

Ref Expression
Hypotheses invid.b B=BaseC
invid.i I=IdC
invid.c φCCat
invid.x φXB
Assertion idiso φIXXIsoCX

Proof

Step Hyp Ref Expression
1 invid.b B=BaseC
2 invid.i I=IdC
3 invid.c φCCat
4 invid.x φXB
5 eqid InvC=InvC
6 eqid IsoC=IsoC
7 1 2 3 4 invid φIXXInvCXIX
8 1 5 3 4 4 6 7 inviso1 φIXXIsoCX