| Step |
Hyp |
Ref |
Expression |
| 1 |
|
termoeu2.c |
|- ( ph -> C e. Cat ) |
| 2 |
|
termoeu2.a |
|- ( ph -> A e. ( TermO ` C ) ) |
| 3 |
|
termoeu2.i |
|- ( ph -> A ( ~=c ` C ) B ) |
| 4 |
|
eqid |
|- ( oppCat ` C ) = ( oppCat ` C ) |
| 5 |
4
|
oppccat |
|- ( C e. Cat -> ( oppCat ` C ) e. Cat ) |
| 6 |
1 5
|
syl |
|- ( ph -> ( oppCat ` C ) e. Cat ) |
| 7 |
|
oppctermo |
|- ( A e. ( TermO ` C ) <-> A e. ( InitO ` ( oppCat ` C ) ) ) |
| 8 |
2 7
|
sylib |
|- ( ph -> A e. ( InitO ` ( oppCat ` C ) ) ) |
| 9 |
4 3
|
oppccic |
|- ( ph -> A ( ~=c ` ( oppCat ` C ) ) B ) |
| 10 |
6 8 9
|
initoeu2 |
|- ( ph -> B e. ( InitO ` ( oppCat ` C ) ) ) |
| 11 |
|
oppctermo |
|- ( B e. ( TermO ` C ) <-> B e. ( InitO ` ( oppCat ` C ) ) ) |
| 12 |
10 11
|
sylibr |
|- ( ph -> B e. ( TermO ` C ) ) |