Metamath Proof Explorer


Theorem termoeu2

Description: Terminal objects are essentially unique; if A is a terminal object, then so is every object that is isomorphic to A . (Contributed by Zhi Wang, 26-Oct-2025)

Ref Expression
Hypotheses termoeu2.c
|- ( ph -> C e. Cat )
termoeu2.a
|- ( ph -> A e. ( TermO ` C ) )
termoeu2.i
|- ( ph -> A ( ~=c ` C ) B )
Assertion termoeu2
|- ( ph -> B e. ( TermO ` C ) )

Proof

Step Hyp Ref Expression
1 termoeu2.c
 |-  ( ph -> C e. Cat )
2 termoeu2.a
 |-  ( ph -> A e. ( TermO ` C ) )
3 termoeu2.i
 |-  ( ph -> A ( ~=c ` C ) B )
4 eqid
 |-  ( oppCat ` C ) = ( oppCat ` C )
5 4 oppccat
 |-  ( C e. Cat -> ( oppCat ` C ) e. Cat )
6 1 5 syl
 |-  ( ph -> ( oppCat ` C ) e. Cat )
7 oppctermo
 |-  ( A e. ( TermO ` C ) <-> A e. ( InitO ` ( oppCat ` C ) ) )
8 2 7 sylib
 |-  ( ph -> A e. ( InitO ` ( oppCat ` C ) ) )
9 4 3 oppccic
 |-  ( ph -> A ( ~=c ` ( oppCat ` C ) ) B )
10 6 8 9 initoeu2
 |-  ( ph -> B e. ( InitO ` ( oppCat ` C ) ) )
11 oppctermo
 |-  ( B e. ( TermO ` C ) <-> B e. ( InitO ` ( oppCat ` C ) ) )
12 10 11 sylibr
 |-  ( ph -> B e. ( TermO ` C ) )